cho đường thẳng (d):y=-2x+4 và (d`):y=-x+3
a) vẽ (d) và (d`) trên hệ trục tọa độ
b) tìm tọa độ giao điểm A của (d) và (d`)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
b: Phương trình hoành độ giao điểm là:
4-2x=3x+1
=>-2x-3x=1-4
=>-5x=-3
=>\(x=\dfrac{3}{5}\)
Thay x=3/5 vào y=3x+1, ta được:
\(y=3\cdot\dfrac{3}{5}+1=\dfrac{9}{5}+1=\dfrac{14}{5}\)
Vậy: \(N\left(\dfrac{3}{5};\dfrac{14}{5}\right)\)
c: (d'): y=3x+1
=>a=3
\(tan\alpha=a=3\)
=>\(\alpha\simeq71^034'\)
b: Phương trình hoành độ giao điểm là:
2x+1=x+3
=>2x-x=3-1
=>x=2
Thay x=2 vào y=x+3, ta được:
y=2+3=5
a:
a:
b: PTHĐGĐ là:
x^2+x-2=0
=>(x+2)(x-1)=0
=>x=-2 hoặc x=1
=>y=4 hoặc y=1
b: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}2x+2=x\\y=x\end{matrix}\right.\Leftrightarrow x=y=-2\)
a:
b: PTHĐGĐ là:
2x^2+x-1=0
=>2x^2+2x-x-1=0
=>(x+1)(2x-1)=0
=>x=-1 hoặc x=1/2
=>y=2 hoặc y=2*1/4=1/2
1:
a:
b: PTHĐGĐ là:
x^2+2x-3=0
=>(x+3)(x-1)=0
=>x=-3 hoặc x=1
=>y=9 hoặc y=1
1:
a:
b: PTHĐGĐ là:
-1/4x^2-x-1=0
=>x^2+4x+4=0
=>(x+2)^2=0
=>x=-2
=>y=-1/4*(-2)^2=-1
2: 3x-y=5 và 2x+3y=18
=>9x-3y=15 và 2x+3y=18
=>11x=33 và 3x-y=5
=>x=3 và y=3*3-5=4
b: Phương trình hoành độ giao điểm là:
\(-\dfrac{1}{2}x^2=-\dfrac{1}{2}x-1\)
\(\Leftrightarrow-\dfrac{1}{2}x^2+\dfrac{1}{2}x+1=0\)
\(\Leftrightarrow x^2-x-2=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
Thay x=2 vào (P), ta được:
\(y=\dfrac{-2^2}{2}=-2\)
Thay x=-1 vào (P), ta được:
\(y=-\dfrac{1^2}{2}=-\dfrac{1}{2}\)
a, tự vẽ
b, Hoành độ giao điểm thỏa mãn pt
\(-2x+4=-x+3\Leftrightarrow3x=-1\Leftrightarrow x=-\frac{1}{3}\)
Thay vào (d') <=> \(y=\frac{1}{3}+3=\frac{10}{3}\)
Vậy d cắt d' tại A(-1/3;10/3)