Cho tam giác ABC có AH là đường cao kẻ từ A. Biết góc B bằng 50 ° . Khi đó số đo góc (BAH) là:
A. 40 °
B. 50 °
C. 45 °
D. 60 °
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong tam giác BAH có ∠(BAH) + ∠(AHB) + ∠(ABH) = 180o
⇒∠(BAH) = 180o - 90o - 50o = 40o
Chọn A
Áp dụng t/c dtsbn:
\(\dfrac{\widehat{A}}{5}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{3}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{5+2+3}=\dfrac{180^0}{10}=18^0\\ \Rightarrow\left\{{}\begin{matrix}\widehat{A}=90^0\\\widehat{B}=36^0\\\widehat{C}=54^0\end{matrix}\right.\)
Do đó tg ABC vuông tại A
Xét tg AHB vuông tại H có \(\widehat{BAH}+\widehat{B}=90^0\Rightarrow\widehat{BAH}=90^0-36^0=54^0\)
Gọi số đo ba góc A, B, C lần lượt là: x, y, z
Theo đề ta có: x/5 = y/2 = z/3, x + y + z= 180 độ
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
x/5 + y/2 + z/3 = (x+y+z)/(5+2+3)= 180/10=18
=> y/2=18=>y=18.2=36
Vì H là đường cao của tam giác ABC nên góc BHA=90 độ
Ta lại có: góc B + góc BAH + góc BHA= 180 độ
hay 36 độ + 90 độ + góc BHA= 180 độ
=> 126 độ + góc BHA= 180 độ
=> góc BHA= 180 độ - 126 độ = 54 độ
Vậy góc BHA có số đo là 54 độ
a) ta đặt a,b,c lần lượt là các số đo của các góc A,B,C
ta có \(\frac{a}{3}=\frac{b}{2}=\frac{c}{1}=\frac{180}{6}=30\)
\(\frac{a}{3}=30\Rightarrow a=90\)
\(\frac{b}{2}=30\Rightarrow b=60\)
vậy góc A=90* là góc vuông
câu b thì ta vẽ đường cao AH sau ta c/m HÂC =60* và BAH= 30* thì ta sẽ làm được
Trong tam giác BAH có ∠(BAH) + ∠(AHB) + ∠(ABH) = 180o
⇒∠(BAH) = 180o - 90o - 50o = 40o
Chọn A