K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2021

\(B=2\left(m^2-m+\dfrac{1}{4}\right)+\dfrac{9}{2}=2\left(m-\dfrac{1}{2}\right)^2+\dfrac{9}{2}\ge\dfrac{9}{2}\)

\(minB=\dfrac{9}{2}\Leftrightarrow m=\dfrac{1}{2}\)

6 tháng 5 2022

\(A=m^2-2m-5\)

\(=m^2-2m+1-6\)

\(=\left(m-1\right)^2-6\ge-6\)

Dấu '' = '' xảy ra khi \(\left(m-1\right)^2=0\Leftrightarrow m=1\)

Vậy \(Min_A=-6\) khi \(m=1\)

6 tháng 5 2022

\(A=m^2-2m-5\)

\(=\left(m^2-2m+1\right)-6\)

\(=\left(m-1\right)^2-6\ge-6\left(Vì\left(m-1\right)^2\ge0\forall m\right)\)

Min \(A=-6\Leftrightarrow m=1\)

6 tháng 5 2022

`A=m^2-2m-5`

`A=m^2-2m+1-6`

`A=(m-1)^2-6`

 Vì `(m-1)^2 >= 0 AA m`

`=>(m-1)^2-6 >= -6 AA m`

 Hay `A >= -6 AA m`

Dấu "`=`" xảy ra `<=>(m-1)^2=0<=>m-1=0<=>m=1`

Vậy `GTN N` của `A` là `-6` khi `m=1`

3 tháng 8 2021

\(\Delta=4m^2-4m+1-4\left(2m-2\right)=4m^2-12m+9=\left(2m-3\right)^2\ge0\)

Do đó pt luôn có nghiệm

Theo định lí Vi-ét:

\(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1x_2=2m-2\end{matrix}\right.\)

Lại có: \(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

\(A=\left(2m-1\right)^2-2\left(2m-2\right)\)           

\(A=4m^2-4m+1-4m+4\)

\(A=4m^2-8m+5\)

\(A=4\left(m-1\right)^2+1\ge1\)

Dấu "=" xảy ra \(\Leftrightarrow\) m=1

Tick hộ nha 😘

3 tháng 8 2021

pt có nghiệm \(< =>\Delta\ge0\)

\(< =>[-\left(2m-1\right)]^2-4\left(2m-2\right)\ge0\)

\(< =>4m^2-4m+1-8m+8\ge0\)

\(< =>4m^2-12m+9\ge0\)

\(< =>4\left(m^2-3m+\dfrac{9}{4}\right)\ge0\)

\(=>m^2-2.\dfrac{3}{2}m+\dfrac{9}{4}\ge0< =>\left(m-\dfrac{2}{3}\right)^2\ge0\)(luôn đúng)

=>pt luôn có 2 nghiệm 

theo vi ét \(=>\left\{{}\begin{matrix}x1+x2=2m-1\\x1x2=2m-2\end{matrix}\right.\)

\(A=\left(x1+x2\right)^2-2x1x2=\left(2m-1\right)^2-2\left(2m-2\right)\)

\(A=4m^2-4m+1-4m+4=4m^2+5\ge5\)

dấu"=" xảy ra<=>m=0

12 tháng 2 2018

A.
Đenta = b^2 - 4ac = (2m-1)^2 - 4.(2m-2).1= 4m^2 -4m +1 -8m +8 = 4m^2 -12m+9
Để phuong trình .... luôn có nghiệm thì đenta lớn hơn hoặc băng 0 xong bạn giải ra là oke 

5 tháng 7 2017

Đáp án A

23 tháng 10 2019

a. + Với  m = − 1 2   phương trình (1) trở thành x 2 − 4 x = 0 ⇔ x = 0 x = 4 .

+ Vậy khi  m = − 1 2  phương trình có hai nghiệm x= 0 và x= 4.

b. + Phương trình có hai nghiệm dương phân biệt khi 

                            Δ = 2 m + 5 2 − 4 2 m + 1 > 0 x 1 + x 2 = 2 m + 5 > 0 x 1 . x 2 = 2 m + 1 > 0

+ Ta có  Δ = 2 m + 5 2 − 4 2 m + 1 = 4 m 2 + 12 m + 21 = 2 m + 3 2 + 12 > 0 , ∀ m ∈ R

+ Giải được điều kiện  m > − 1 2  (*).

+ Do P>0 nên P đạt nhỏ nhất khi P 2  nhỏ nhất.

+ Ta có P 2 = x 1 + x 2 − 2 x 1 x 2 = 2 m + 5 − 2 2 m + 1 = 2 m + 1 − 1 2 + 3 ≥ 3     ( ∀ m > − 1 2 ) ⇒ P ≥ 3    ( ∀ m > − 1 2 ) .

và P = 3  khi m= 0 (thoả mãn (*)).

+ Vậy giá trị nhỏ nhất  P = 3  khi m= 0.