K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2021

Sửa: \(\left(\dfrac{1}{3}-2x\right)^{2020}+\left(3y-x\right)^{2022}\le0\)

Mà \(\left(\dfrac{1}{3}-2x\right)^{2020}+\left(3y-x\right)^{2022}\ge0\) với mọi x,y

Do đó \(\left\{{}\begin{matrix}\dfrac{1}{3}-2x=0\\3y-x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{6}\\y=\dfrac{1}{18}\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}=6+18=24\)

16 tháng 7 2023

P = (x^2 + 2x) - 2024
= (x^2 + 2x + 1) - 1 - 2024
= (x + 1)^2 - 2025

Với mọi giá trị của x, (x + 1)^2 luôn lớn hơn hoặc bằng 0. Do đó, giá trị nhỏ nhất của P là khi (x + 1)^2 đạt giá trị nhỏ nhất, tức là bằng 0.

Khi (x + 1)^2 = 0, ta có x + 1 = 0, từ đó suy ra x = -1.

Vậy, giá trị nhỏ nhất của biểu thức P là P = (-1 + 1)^2 - 2025 = -2025.

15 tháng 7 2019

1) Đề sai, thử với x = -2 là thấy không thỏa mãn.

Giả sử cho rằng với đề là x không âm thì áp dụng BĐT Cauchy:

\(A=\)\(\frac{2x}{3}+\frac{9}{\left(x-3\right)^2}=\frac{x-3}{3}+\frac{x-3}{3}+\frac{9}{\left(x-3\right)^2}+2\)

\(A\ge3\sqrt[3]{\frac{\left(x-3\right).\left(x-3\right).9}{3.3.\left(x-3\right)^2}}+2=3+2=5>1\)

Không thể xảy ra dấu đẳng thức.

AH
Akai Haruma
Giáo viên
10 tháng 2 2024

** Bổ sung điều kiện $x,y$ là số nguyên.

a/

$(5x-1)(y+1)=4$
Với $x,y$ nguyên thì $5x-1, y+1$ nguyên. Mà tích của chúng bằng 4 nên ta có các trường hợp sau:

TH1:  $5x-1=1, y+1=4\Rightarrow x=\frac{2}{5}$ (loại) 

TH2:  $5x-1=-1, y+1=-4\Rightarrow x=0; y=-5$

TH3:  $5x-1=2, y+1=2\Rightarrow x=\frac{3}{5}$ (loại) 

TH4: $5x-1=-2, y+1=-2\Rightarrow x=\frac{-1}{5}$ (loại)

TH5: $5x-1=4, y+1=1\Rightarrow x=1; y=0$

TH6: $5x-1=-4; y+1=-1\Rightarrow x=\frac{-3}{5}$ (loại)

Vậy......

AH
Akai Haruma
Giáo viên
10 tháng 2 2024

b/

$xy-7y+5x=0$

$y(x-7)+5(x-7)=-35$

$(x-7)(y+5)=-35$

Vì $x,y$ nguyên nên $x-7, y+5$ nguyên. $(x-7)(y+5)=-35\Rightarrow x-7$ là ước của $-35$.

Mà $x\geq 3\Rightarrow x-7\geq -4$

$\Rightarrow x-7\in \left\{-1; 1; 5; 7; 35\right\}$

Nếu $x-7=-1\Rightarrow y+5=35$

$\Rightarrow x=6; y=30$

Nếu $x-7=1\Rightarrow y+5=-35$

$\Rightarrow x=8; y=-40$

Nếu $x-7=5\Rightarrow y+5=-7$

$\Rightarrow x=12; y=-12$
Nếu $x-7=7\Rightarrow y+5=-5$

$\Rightarrow x=14; y=-10$

Nếu $x-7=35; y+5=-1$

$\Rightarrow x=42; y=-6$

AH
Akai Haruma
Giáo viên
8 tháng 12 2023

Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn.

24 tháng 11 2019

\(\left(\frac{1}{3}-2x\right)^{2018}+\left(3y-x\right)^{2020}\le0\)(1)

Vì \(\left(\frac{1}{3}-2x\right)^{2018}\ge0\forall x\)\(\left(3y-x\right)^{2020}\ge0\forall x,y\)

\(\Rightarrow\left(\frac{1}{3}-2x\right)^{2018}+\left(3y-x\right)^{2020}\ge0\forall x,y\)(2)

Từ (1), (2) \(\Rightarrow\left(\frac{1}{3}-2x\right)^{2018}+\left(3y-x\right)^{2020}=0\)

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{3}-2x=0\\3y-x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{6}\\y=\frac{1}{18}\end{cases}}\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}=6+18=24\left(đpcm\right)\)

Ta có: \(\left(2x-8\right)^{2000}+\left(3y+4\right)^{2022}\le0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-8=0\\3y+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=8\\3y=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=-\dfrac{4}{3}\end{matrix}\right.\)