Cho ΔABC vuông tại B, vẽ đường cao BH sao cho AH = 4cm, HC = 2cm.
a) tính BH
b) tính số đo góc A
c) chứng minh rằng \(S_{ABC}=\dfrac{BH^2}{2sinA.sinC}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(AH=\sqrt{2\cdot4}=2\sqrt{2}\left(cm\right)\)
\(AB=\sqrt{AH^2+HB^2}=2\sqrt{3}\left(cm\right)\)
a, \(AB=\sqrt{BC^2-AC^2}=10\sqrt{5}\left(cm\right)\)
\(\cos B=\dfrac{AC}{BC}=\dfrac{2}{3}\approx48^0\Rightarrow\widehat{B}\approx48^0\\ \Rightarrow\widehat{C}=90^0-\widehat{B}\approx90^0-48^0=42^0\)
b, Áp dụng HTL: \(\left\{{}\begin{matrix}AH=\dfrac{AB\cdot AC}{BC}=\dfrac{20\sqrt{5}}{30}\left(cm\right)\\CH=\dfrac{AC^2}{BC}=\dfrac{40}{3}\left(cm\right)\end{matrix}\right.\)
a: Xet ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: ΔHBA đồng dạng với ΔABC
=>BH/BA=BA/BC
=>BA^2=BH*BC
a: BC=căn 6^2+8^2=10cm
b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
c: ΔABC đồng dạng với ΔHBA
=>BA/BH=BC/BA
=>BA^2=BH*BC
BH=AB^2/BC=6^2/10=3,6cm
CH=10-3,6=6,4cm
d: AD là phân giác
=>DB/AB=DC/AC
=>DB/3=DC/4=10/7
=>DB=30/7cm
a) áp dụng định lý py-ta-go dối với ▲ABC vuông tại A ta có:
BC2=AB2+AC2
BC=10 cm
b)cm ▲HBA dồng dạng ▲ABC(g-g)
suy ra \(\frac{AB}{BC}=\frac{BH}{AB}\)
\(\Rightarrow AB^2=BH\cdot BC\)
thay số vào ta có : 62=BHx10
BH=3.6 cm
HC=BC-BH=10-3.6=6.4 cm
a, Áp dụng HTL: \(BH=\sqrt{AH\cdot HC}=2\sqrt{2}\left(cm\right)\)
b, \(\tan A=\dfrac{BH}{AH}=\dfrac{\sqrt{2}}{2}\approx35^0\Leftrightarrow\widehat{A}\approx35^0\)
c, Áp dụng HTL: \(BH\cdot AC=AB\cdot BC\Leftrightarrow BH^2\cdot AC^2=AB^2\cdot BC^2\)
\(\dfrac{BH^2}{2\sin A\cdot\sin C}=BH^2\cdot\dfrac{1}{\dfrac{2BC\cdot AB}{AC^2}}=\dfrac{1}{2}\cdot\dfrac{BH^2\cdot AC^2}{BC\cdot AB}=\dfrac{1}{2}\cdot\dfrac{AB^2\cdot BC^2}{AB\cdot BC}=\dfrac{1}{2}AB\cdot BC=S_{ABC}\)