K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2019

Chọn đáp án C.

Ta có:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

26 tháng 2 2020

1) Thực hiện phép tính (Tính nhanh nếu có thể)

a) 5.(-8).2.(-3)     

= (5.2).[-8.(-3) ]

= 10 . (-24)

= -240                                   

b)3.(-5)2 +2.(-5)-20

=3.25+2.(-5)-20

=75+(-10)-20

=65-20

=45

c)34.(15-10)-15.(34-10)

=34.5-15.24

=170-360

=-190                          

d)27.(-17)+(-17).73

=-17.(27+73)

=-17.100

=-1700

e)512.(2-128)-128.(-512)

=512.(-126)-128.(-512)

=512.(-126)-(-128).512

=512.[-126-(-128)]

=512.2

=1024

3 tháng 3 2020

a,\(5.\left(-8\right).2.\left(-3\right)\)                

\(=\left[\left(5.2\right).\left(-8\right).\left(-3\right)\right]\)

\(=10.24\)

\(=240\)

b,\(3.\left(-5\right)^2+2.\left(-5\right)-20\)

\(=3.25-2.\left(-5\right)-20\)

\(=75+10-20\)

\(=65\)

7 tháng 6 2016

bài này cô si đc ko nhỉ

7 tháng 6 2016

Đặt \(A=\left(1+\frac{1}{a^3}\right)\left(1+\frac{1}{b^3}\right)\left(1+\frac{1}{c^3}\right)\)

Ta có:

\(A=1+\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)+\left(\frac{1}{a^3b^3}+\frac{1}{b^3c^3}+\frac{1}{c^3a^3}\right)+\frac{1}{a^3b^3c^3}\)

Áp dụng BĐT Côsi, ta có:

\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\ge\frac{3}{abc}\)

\(\frac{1}{a^3b^3}+\frac{1}{b^3c^3}+\frac{1}{c^3a^3}\ge\frac{3}{a^2b^2c^2}\)

Thay vào A, ta được \(A\ge1+\frac{3}{abc}+\frac{3}{a^2b^2c^2}+\frac{1}{a^3b^3c^3}=\left(1+\frac{1}{abc}\right)^3\)

Lại áp dụng BĐT Côsi ta có:

\(abc\le\left(\frac{a+b+c}{3}\right)^3=\left(\frac{6}{3}\right)^3=8\)hay\(\frac{1}{abc}\ge\frac{1}{8}\)

Suy ra:\(A\ge\left(1+\frac{1}{8}\right)^3=\frac{729}{512}\)

Đẳng thức xảy ra khi và chỉ khi:\(\hept{\begin{cases}a+b+c=6\\a=b=c\end{cases}\Leftrightarrow}a=b=c=2\)

17 tháng 7 2015

Cách ngắn gọn:

\(1+\frac{1}{a^3}=\frac{1}{8}+\frac{1}{8}+...+\frac{1}{a^3}\ge9\sqrt[9]{\frac{1}{8^8.a^3}}=9\sqrt[9]{\frac{1}{8^8}}.\sqrt[3]{\frac{1}{a}}\)

Tương tự với b, c

\(\Rightarrow\left(1+\frac{1}{a^3}\right)\left(1+\frac{1}{b^3}\right)\left(1+\frac{1}{c^3}\right)\ge\left(9\sqrt[9]{\frac{1}{8^8}}\right)^3.\sqrt[3]{\frac{1}{abc}}\ge\frac{729}{256}.\sqrt[3]{\frac{1}{\left(\frac{a+b+c}{3}\right)^3}}=\frac{729}{512}\)

Dấu "=" xảy ra khi a = b = c = 2.

a) = \(\frac{127}{96}\)

b) = \(\frac{255}{256}\)

c) Mik bỏ nha

d) = \(\frac{1023}{512}\)

e) = \(\frac{2343}{625}\)

10 tháng 8 2017

bạn có thể trả lời rõ ra được ko

27 tháng 12 2015

ai ủng hộ vài li-ke lên 90 điểm hỏi đáp đi

30 tháng 12 2015

ap dung bdt bunhiacopski mo rong