Xác định giá trị của tham số m để hệ phương trình x + y = − 1 m x + y = 2 m vô nghiệm
A. m = 1
B. m = −1
C. m = 0
D. m = 1 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 2 x − y = 4 ( m − 1 ) x + 2 y = m
⇔ y = 2 x − 4 2 y = ( 1 − m ) x + m ⇔ y = 2 x − 4 y = 1 − m 2 x + m 2
Để hệ phương trình 2 x − y = 4 ( m − 1 ) x + 2 y = m vô nghiệm thì đường thẳng d: y = 2x – 4 song song với đường thẳng d’: y = 1 − m 2 x + m 2 suy ra
1 − m 2 = 2 m 2 ≠ − 4 ⇔ 1 − m = 4 m ≠ − 8 ⇔ m = − 3 m ≠ − 8 ⇔ m = − 3
Đáp án: D
Xét hệ x − ( m − 2 ) y = 2 ( m − 1 ) x − 2 y = m − 5
⇔ ( m − 2 ) y = x − 2 2 y = ( m − 1 ) x − m + 5 ⇔ ( m − 2 ) y = x − 2 y = m − 1 2 x − m 2 + 5 2
TH1: Với m – 2 = 0 ⇔ m = 2 ta có hệ 0. y = x − 2 y = 1 2 x + 3 2 ⇔ x = 2 y = 1 2 x + 3 2
Nhận thấy hệ này có nghiệm duy nhất vì hai đường thẳng x = 2 và y = 1 2 x + 3 2 cắt nhau
TH2: Với m – 2 ≠ 0 ⇔ m ≠ 2 ta có hệ: ( m − 2 ) y = x − 2 y = m − 1 2 x − m 2 + 5 2 ⇔ y = 1 m − 2 x − 2 m − 2 y = m − 1 2 x − m 2 + 5 2
Để hệ phương trình đã cho có nghiệm duy nhất thì hai đường thẳng: d : y = 1 m − 2 x − 2 m − 2 và d ' : y = m − 1 2 x − m 2 + 5 2 cắt nhau
⇔ 1 m − 2 ≠ m − 1 2 ⇔ m – 1 m – 2 ≠ 2 ⇔ m 2 – 3 m + 2 ≠ 2 ⇔ m 2 – 3 m 0
Suy ra m ≠ {0; 2; 3}
Kết hợp cả TH1 và TH2 ta có m ≠ {0; 3}
Vậy hệ phương trình đã cho có nghiệm duy nhất khi m ≠ {0; 3}
Đáp án: C
Để hệ phương trình 3 m x + y = − 2 m − 3 x − m y = − 1 + 3 m có vô số nghiệm thì
3 m − 3 = 1 − m = − 2 m − 1 + 3 m ⇔ 3 m 2 = 3 2 m 2 = 3 m − 1 ⇔ m = ± 1 2 m 2 − 3 m + 1 = 0 ⇔ m = ± 1 2 m − 1 m − 1 = 0
⇔ m = ± 1 m = 1 m = 1 2 ⇒ m = 1
Đáp án: B
Để hệ phương trình x + y = − 1 m x + y = 2 m vô nghiệm thì m 1 = 1 1 ≠ 2 m 1
⇔ m = 1 m ≠ 1 2 ⇒ m = 1
Đáp án: A