cho tỉ lệ thức a+b+c/a+b-c=a-b+c/a-b-c và b khác 0 .CHỨNG minh c=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :a/b = c/d suy ra a/c = b/d
Aps dụng tính chất dãy tính chất tỉ số bừng nhau
a/c =b/d = a+b/c+d = a-b/c-d suy ra a+b/a-b = c+d/c-d
Theo t/c dãy số bằng nhau, ta có:
a+b+c/a+b-c=a-b+c/a-b-c=a+b+c-(a-b+c)/a+b-c-(a-b-c)=a+b+c-a+b-c/a+b-c-a+b+c=2b/2b=1 => a+b+c=a+b-c => c= -c => c- (-c)=0 => c+c=0 => 2c=0 => c=0
#CHúc học tốt
Bài làm :
Theo tính chất tỉ lệ thức :
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{\left(a+b+c\right)+\left(a-b+c\right)}{\left(a+b-c\right)+\left(a-b-c\right)}=\frac{a+c}{a-c}\text{(1)}\)
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{\left(a+b+c\right)-\left(a-b+c\right)}{\left(a+b-c\right)-\left(a-b-c\right)}=\frac{2b}{2b}=1\text{(2)}\)
Từ (1) và (2)
\(\Rightarrow\frac{a+c}{a-c}=1\)
\(\Rightarrow a+c=a-c\)
\(\Rightarrow c=0\)
=> Điều phải chứng minh
\(\frac{a+b}{b}=1\frac{a}{b}\)
\(\frac{c+d}{d}=1\frac{c}{d}\)
Vì \(\frac{c}{d}=\frac{a}{b}\)nên\(1\frac{c}{d}=1\frac{a}{b}\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\)
\(\RightarrowĐPCM\)
\({a \over b}={c \over d} => ad=bc \)
\({a+b \over b}={c+d \over d} \) chỉ khi (a+b)d = (c+d)b <=> ad+bd=bc+bd mà ad=bc => ad+bd=bc+bd => \({a+b \over b}={c+d \over d}\)
mấy câu sau làm tương tự chủ yếu là nhân chéo
Theo tính chất tỉ lệ thức :
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{\left(a+b+c\right)+\left(a-b+c\right)}{\left(a+b-c\right)+\left(a-b-c\right)}=\frac{a+c}{a-c}\) (1)
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{\left(a+b+c\right)-\left(a-b+c\right)}{\left(a+b-c\right)-\left(a-b-c\right)}=\frac{2b}{2b}\) (2)
Từ (1) và (2) => \(\frac{a+c}{a-c}=1\)
=> a + c = a - c
=> 2c = 0
=> c = 0
đặt x/2=y/5=k
=> x=2k, y=5k
ta có: 5kx2k=10
=> 10k^2=10
=> k^2=1
=> k=±1
với k=1=> x=2x1=2 ; y=1x5=5
với k=-1=> x=-1x2=-2 ; y=-1x5=-5
\(\frac{x}{2}=\frac{y}{5}\Rightarrow5x=2y\)(1)
=>5x-2y=0
=>-(2y-5x)=0
=>2y-5x=0 (1)
xy=10 (2)
=>ta có:\(\int^{2y-5x=0}_{xy=10}\)
giải ra ta đc:x=±2;y=±5
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(đpcm)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(\Rightarrow\left(a+b\right)\left(c-d\right)=\left(a-b\right)\left(c+d\right)\)
\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(điều phải chứng minh)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
vì chỉ khi c=0 thì biểu thức trên mới hợp lệ