K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2021

\(=x\left(x^2-2x+1\right)=x\left(x-1\right)^2\)

6 tháng 11 2021

\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

10 tháng 11 2021

=\(x^2(x^2+2x+1)\)

=\(x^2(x+1)^2\)

18 tháng 10 2021

1.A

2.C

3.B

4.C

15 tháng 12 2021

a

c

b

c

5 tháng 7 2019

#)Giải :

\(x^3-2x-4\)

\(=x^3+2x^2-2x^2+2x-4x-4\)

\(=x^3+2x^2+2x-2x^2-4x-4\)

\(=x\left(x^2+2x+2\right)-2\left(x^2+2x+2\right)\)

\(=\left(x-2\right)\left(x^2+2x+2\right)\)

\(x^4+2x^3+5x^2+4x-12\)

\(=x^4+x^3+6x^2+x^3+x^2+6x-2x^2-2x-12\)

\(=x^2\left(x^2+x+6\right)+x\left(x^2+x+6\right)-2\left(x^2+x+6\right)\)

\(=\left(x^2+x+6\right)\left(x^2+x-2\right)\)

\(=\left(x^2+x+6\right)\left(x-1\right)\left(x+2\right)\)

5 tháng 7 2019

Câu 1.

Đoán được nghiệm là 2.Ta giải như sau:

\(x^3-2x-4\)

\(=x^3-2x^2+2x^2-4x+2x-4\)

\(=x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2+2x+2\right)\)

9 tháng 11 2021

56B

57B

58B

9 tháng 11 2021

56.B

57.B

58.B

2 tháng 12 2021

\(=x\left(x^2-2x+1\right)=x\left(x-1\right)^2\)

2 tháng 12 2021

x^3 -2x^2 +x 

=𝑥 ( 𝑥2 − 2 𝑥 + 1 )

=x(x-1)2

4 tháng 1 2022

\(x^3+2-2x^2-x=\left(x^3-2x^2\right)-\left(x-2\right)=x^2\left(x-2\right)-\left(x-2\right)=\left(x^2-1\right)\left(x-2\right)=\left(x-1\right)\left(x+1\right)\left(x-2\right)\)

4 tháng 1 2022

\(x^3+2-2x^2-x\)

\(=\left(x^3-2x^2\right)+\left(2-x\right)\)

\(=x^2\left(x-2\right)-\left(x-2\right)\)

\(=\left(x^2-1\right)\left(x-2\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x-2\right)\)

23 tháng 9 2017

a) x3-2x2-x+2

=x(x2-1)+2(-x2+1)

=x(x2-1)-2(x2-1)

=(x2-1)(x-2)

b)

x2+6x-y2+9

=x2+6x+9-y2

=(x+3)2-y2

=(x+3-y)(x+3+y)

18 tháng 7 2021

\(=x^3+x^2+x^2+x+x+1=x^2\left(x+1\right)+x\left(x+1\right)+x+1\)

\(=\left(x+1\right)\left(x^2+x+1\right)\)

18 tháng 7 2021

x3 + 2x2 + 2x + 1 

= (x3 + 1) + (2x2 + 2x)

= (x + 1)(x2 + x + 1) + 2x(x + 1)

= (x + 1)(x2 + x + 1 + 2x)

= (x + 1)(x2 + 3x + 1)

 Chúc bạn học tốt