chung minh rang : 3n+2-2n+2+3n-2n chia het cho 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(3n+1)\(⋮\)(2n+3)
=>[2(3n+1)-3(2n+3)]\(⋮\)(2n+3)
=> [6n+2-6n-9] \(⋮\)(2n+3)
=> -7 \(⋮\)(2n+3)
=>2n+3\(\in\)Ư(-7)={-1;-7;1;7}
Ta có bảng:
2n+3 | -1 | -7 | 1 | 7 |
n+3 | 7 | 1 | -7 | -1 |
n | 4 | -2 | -10 | -4 |
Vậy n\(\in\){4;-2;-10;-4}
(n2 +5)\(⋮\)(n+1)
=>[(n2 +5)-n(n+1)]\(⋮\)(n+1)
=>[n2+5-n2-1] \(⋮\)(n+1)
=> 4 \(⋮\)(n+1)
=>n+1\(\in\)Ư(4)={-1;-2;-4;1;2;4}
Ta có bảng:
n+1 | -1 | -2 | -4 | 1 | 2 | 4 |
n | -2 | -3 | -5 | 0 | 1 | 3 |
Vậy n={-2;-3;-4;0;1;3}
Mik chỉ làm đc 2 câu thôi nếu đúng thì k cho mk nhé!
Vì 6=23 và (2.3)=1
Ta có:
n^3+3n^2+n=n^2(n+1)+2n(n+1) =n(n+1)(n+2)
Nhận thấy n(n+1)(n+2) là tích 3 số nguyên liên tiếp
suy ra Tồn tại 1 số chia hết cho 2 (vì n(n+1) là tích 2 số nguyên liên tiếp) (với mọi số nguyên n)
Tồn tại 1 số chia hết cho 3 (vì n(n+1)(n+2) là tích 3 số nguyên liên tiếp)
suy ra n(n+1)(n+2) chia hết cho 2,3
hay n^3+3n^2+2n chia hết cho 6
suy ra ĐPCM
n+7 chia het n-2
suy ra (n-2)+9 chia het n-2
suy ra 9 chia het n-2
suy ra n-2 \(\in\) Ư(9)={1;3;9} nếu bạn chưa học số âm
suy ra n-2 \(\in\) Ư(9)={1;3;9;-1;-3;-9} nếu bạn học số âm rồi
n-2=1 n-2=3 n-2=9
n =1+2 n =3+2 n =9+2
n = 3 n =5 n =11 nếu bạn học số âm rồi thì làm tiếp theo cách này còn nếu chưa thì đến đây là hết
a.n + 7 chia hết cho n+2
=> n + 2 + 5 chia hết cho n+2
=> 5 chia hết cho n+2
=> n + 2 thuộc tập hợp các số : 5;-5;1;-1
=> n thuộc tập hợp các số : 3;-7;-1;-3
b.9-n chia hết cho n-3
=> 6 - n - 3 chia hết cho n-3
=> 6 chia hết cho n-3
=> n -3 thuộc tập hợp các số : 1;-1;6;-6
=> n thuộc tập hợp các sô : 4;2;9;-3
Giải hết ra dài lắm
k mk nha
a) Ta có:
\(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n\)
Vì \(-5n⋮5\) với n thuộc Z
\(\Rightarrow n\left(2n-3\right)-2n\left(n+1\right)⋮5\) với n thuộc Z
b) Ta có:
\(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)
\(=n^3+3n^2-n+2n^2+6n-2-n^3+2\)
\(=5n^2+5n\)
\(=5\left(n^2+n\right)\)
Vì \(5\left(n^2+n\right)⋮5\)
\(\Rightarrow\left(n^2+3n-1\right)\left(n+2\right)-n^3+2⋮5\)
c) Ta có:
\(\left(xy-1\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)
\(=\left(xy+1-2\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)
\(=\left(xy+1\right)\left(x^{2003}+y^{2003}\right)-2\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)
\(=\left(xy+1\right)\left(x^{2003}+y^{2003}-x^{2003}+y^{2003}\right)-2\left(x^{2003}+y^{2003}\right)\)
\(=2\left(xy+1\right)y^{2003}-2\left(x^{2003}+y^{2003}\right)\)
Vì \(2\left(xy+1\right)y^{2003}⋮2\)
\(2\left(x^{2003}+y^{2003}\right)⋮2\)
\(\Rightarrow2\left(xy+1\right)y^{2003}-2\left(x^{2003}+y^{2003}\right)⋮2\)
\(\Rightarrow\left(xy-1\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)⋮2\)
B,
6n+7 = 6n + 3 +4= 3(2n+1)+4 chia hết cho 2n + 1
Suy ra 4 chia hết cho 2n + 1 Suy ra 2n +1 thuộc Ư (4)) và n là số lẻ
Ư (4) ={ 1;2;4}
Vì n là số lẻ nên
2n + 1 =1
2n =1-1
2n =0
n = 0 : 2 =0
Vậy n =0
A3n+7 chia het cho n+2
3n-12+5 chia het cho n+2
(3n-12)+5 chia het cho n+2
3(n-4)+5 chia het cho n+2
=>5 chia het cho n+2
=>n+2 thuoc (U)5={1;-1;5;-5}
Neu:n+2=1=>n=-1(loai)
Neu:n+2=-1=>n=-3(loai)
Neu:n+2=5=>n=3
Neu:n+2=-5=>n=-7(loai)
Vay:n=3
3n+2-2n+2 +3n-2n
=(3n+2+3n)+(-2n+2 -2n)
=3n.(32+1)-2n.(22+1)
=3n.10-2n.5
=3n.10-2n-1.10
=10.(3n-2n-1)chia hết cho 10
Vậy 3n+2-2n+2 +3n-2n chia hết cho 10
Ta có: 3n+2 - 2n+2 + 3n - 2n
= 3n(32 + 1) - 2n(22 + 1)
= 10 . 3n - 5 . 2n
= 10 . 3n - 10 . 2n - 1
= 10(3n - 2n - 1) chia hết cho 10
Vậy 3n+2 - 2n+2 + 3n - 2n chia hết cho 10