K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2018

Đáp án C

Ta có sin 2 x = − 1 2 ⇔ sin 2 x = sin − π 6  

  ⇔ 2 x = − π 6 + k 2 π 2 x = π + π 6 + k 2 π ⇔ x = − π 12 + k π x = 7 π 12 + k π k ∈ ℤ

Trường hợp 1: x = − π 12 + k π .Do 0 < x < π  nên 0 < π 12 + k π < π ⇔ 1 12 < k < 13 12  

Vì k ∈ ℤ nên ta chọn được k = 1 thỏa mãn. Do đó, ta được nghiệm x = 11 π 12 .  

Trường hợp 2: x = 7 π 12 + k π . Do 0 < x < π nên  0 < 7 π 12 + k π < π ⇔ − 7 12 < k < 5 12

Vì  k ∈ ℤ nên ta chọn được k = 0 thỏa mãn. Do đó, ta được nghiệm  x = 7 π 12 .

Vậy phương trình đã cho có hai nghiệm.

4 tháng 3 2018

NV
7 tháng 11 2021

\(sin^2x-2m.sinx.cosx-sinx.cosx+2mcos^2x=0\)

\(\Leftrightarrow sinx\left(sinx-cosx\right)-2mcosx\left(sinx-cosx\right)=0\)

\(\Leftrightarrow\left(sinx-cosx\right)\left(sinx-2m.cosx\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}sinx=cosx\\sinx=2m.cosx\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}tanx=1\\tanx=2m\end{matrix}\right.\)

Do \(tanx=1\) ko có nghiệm đã cho nên \(tanx=2m\) phải có nghiệm trên khoảng đã cho

\(\Rightarrow tan\left(\dfrac{\pi}{4}\right)< 2m< tan\left(\dfrac{\pi}{3}\right)\)

\(\Rightarrow1< 2m< \sqrt[]{3}\)

\(\Rightarrow m\in\left(\dfrac{1}{2};\dfrac{\sqrt{3}}{2}\right)\) (hoặc có thể 1 đáp án là tập con của tập này cũng được)

6 tháng 4 2020

hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

7 tháng 4 2020

,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Thay x = -2 vào pt trên ta đc

\(\left(-2\right)^2-\left(2m+1\right)\left(-2\right)+m^2+m=0\)

\(4+4m-2+m^2+m=0\)

\(m^2+5m+2=0\)

Ta có : \(5^2-4.2=25-8=17>0\)

Suy ra : \(m_1=\frac{-5-\sqrt{17}}{2};m_2=\frac{-5+\sqrt{17}}{2}\)

Mà cho luôn vô nghiệm đi cho nhanh.