K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2017

18 tháng 4 2019

Chọn A

Dựa vào đồ thị của hàm f'(x) ta có bảng biến thiên.

Vậy giá trị lớn nhất M = f(2)

Hàm số đồng biến trên khoảng (0;2) nên f(2) > f(1) => f(2) - f(1) > 0 .

Hàm số nghịch biến trên khoảng (2;4) nên f(2) > f(3) => f(2) - f(3) > 0.

Theo giả thuyết: f(0) + f(1) - 2f(2) = f(4) - f(3).

=> f(0) > f(4)

Vậy giá trị nhỏ nhất m = f(4)

16 tháng 3 2018

a) Giải sách bài tập Toán 12 | Giải sbt Toán 12

f′(x) > 0 trên khoảng (-4; 0) và f’(x) < 0 trên khoảng (0; 4).

Hàm số đạt cực đại tại x = 0 và f C Đ  = 5

Mặt khác, ta có f(-4) = f(4) = 3

Vậy Giải sách bài tập Toán 12 | Giải sbt Toán 12

d) f(x) = | x 2  − 3x + 2| trên đoạn [-10; 10]

Khảo sát sự biến thiên và vẽ đồ thị của hàm số g(x) = x 2  – 3x + 2.

Ta có:

g′(x) = 2x − 3; g′(x) = 0 ⇔ x = 3/2

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

nên ta có đồ thị f(x) như sau:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đồ thị suy ra: min f(x) = f(1) = f(2) = 0; max = f(x) = f(−10) = 132

e) Giải sách bài tập Toán 12 | Giải sbt Toán 12

f′(x) < 0 nên và f’(x) > 0 trên (π/2; 5π/6] nên hàm số đạt cực tiểu tại x = π/2 và f C T  = f(π/2) = 1

Mặt khác, f(π/3) = 2√3, f(5π/6) = 2

Vậy min f(x) = 1; max f(x) = 2

g) f(x) = 2sinx + sin2x trên đoạn [0; 3π/2]

f′(x) = 2cosx + 2cos2x = 4cos(x/2).cos3(x/2)

f′(x) = 0

⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có: f(0) = 0,

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đó ta có: min f(x) = −2 ; max f(x) = 3√3/2

6 tháng 2 2022

f'(x)>0 với mọi x khác -8, suy ra hàm số đã cho đồng biến trên [0;3].

Giá trị nhỏ nhất của f(x) trên [0;3] là (-m^2)/8. Ta có: (-m^2)/8=2.

Suy ra, không có giá trị nào của số thực m thỏa yêu cầu đề bài.

6 tháng 2 2022

sai

4 tháng 6 2017

Chọn B

Từ đồ thị của hàm số f'(x) trên đoạn [0;4] ta có bảng biến thiên của hàm số trên đoạn [0;4] như sau:

Từ bảng biến thiên ta có 

Mặt khác 

Suy ra 

13 tháng 8 2017

Đáp án B

24 tháng 8 2016

\(f'\left(x\right)=\frac{\frac{\sqrt{x+1}}{\sqrt{x}}-\frac{\sqrt{x}}{\sqrt{x+1}}}{x+1}=\frac{1}{\sqrt{x}\left(\sqrt{x+1}\right)^3}>0;\forall x\in\left(0;4\right)\)

Mà f(x) liên tục trên [0;4] nên hàm số đồng biến trên [0;4]

\(\Rightarrow Maxf\left(x\right)_{\left[0;4\right]}=f\left(4\right)\)

YCBT \(\Leftrightarrow\begin{cases}m>1\\f\left(4\right)\le3\end{cases}\)  \(\Leftrightarrow\begin{cases}m>1\\\frac{4+m}{\sqrt{5}}\le3\end{cases}\)\(\Leftrightarrow1< m< 3\sqrt{5}-4\)

6 tháng 4 2019

Đáp án C

NV
13 tháng 1 2021

\(f\left(x\right)=e^{sinx}-sinx-1\)

\(\Rightarrow f'\left(x\right)=cosx.e^{sinx}-cosx=cosx\left(e^{sinx}-1\right)\)

\(f'\left(x\right)=0\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sinx=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{\pi}{2}\\x=\pi\end{matrix}\right.\)

\(f\left(0\right)=0\) ; \(f\left(\dfrac{\pi}{2}\right)=e-2\) ; \(f\left(\pi\right)=0\)

\(\Rightarrow f\left(x\right)_{min}=0\) ; \(f\left(x\right)_{max}=e-2\)

30 tháng 8 2017

6 tháng 7 2018