Tìm cosin góc giữa 2 đướng thẳng ∆ 1 : 2 x + y + 1 = 0 và ∆ 2 : x = 2 + t y = 1 - t
A. 10 10
B. 3/10
C. 3/5
D. 3 10 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Tìm cosin góc giữa 2 đg thẳng denta 1 : 10x +5y -1=0 và denta 2 : x = 2+t ; y = 1-t
\(\Delta\left(1\right):10x+5y-1=0\)
\(\Delta\left(2\right):\left\{{}\begin{matrix}x=2+t\\y=1-t\end{matrix}\right.\)
\(\Delta\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}t=x-2\\y=1-\left(x-2\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}t=x-2\\y=1-x+2\end{matrix}\right.\Leftrightarrow x+y-3=0\)
Ta có phương trình tổng quát của \(\Delta\left(2\right)\)là \(x+y-3=0\)
\(cos\left(\Delta\left(1\right),\Delta\left(2\right)\right)=\frac{\left|a_1.a_2+b_1.b_2\right|}{\sqrt{a_1^2+b_1^2}\sqrt{a_2^2+b_2^2}}\)
\(=\frac{\left|10+5\right|}{\sqrt{1+1}.\sqrt{100+25}}=\frac{15}{5\sqrt{10}}\)
Bấm SHIFT COS\(\left(\frac{15}{5\sqrt{10}}\right)\)=o'''
\(=18^o26'5,82''\)
bài 2,3,4 tương tự vậy.
2.
Vecto pháp tuyến của $\Delta_1$: \(\overrightarrow{n_1}=(1,2)\)
Vecto pháp tuyến của $\Delta_2$: \(\overrightarrow{n_2}=(1,-1)\)
Cosin góc giữa 2 đường thẳng
\(\cos (\Delta_1,\Delta_2)=\frac{|\overrightarrow{n_1}.\overrightarrow{n_2}|}{|\overrightarrow{n_1}|.|\overrightarrow{n_2}|}=\frac{|1.1+2(-1)|}{\sqrt{1^2+2^2}.\sqrt{1^2+(-1)^2}}=\frac{\sqrt{10}}{10}\)
Đáp án A
1.
Vecto pháp tuyến của $\Delta_1: (10,5)$
$\Rightarrow$ vecto chỉ phương \(\overrightarrow{u_1}=(-5,10)\)
Vecto chỉ phương của $\Delta_2$ \(\overrightarrow{u_2}=(1,-1)\)
Cosin góc giữa 2 đường thẳng:
\(\cos (\overrightarrow{u_1},\overrightarrow{u_2})=\frac{|\overrightarrow{u_1}.\overrightarrow{u_2}|}{|\overrightarrow{u_1}||\overrightarrow{u_2}|}=\frac{|-5.1+10(-1)|}{\sqrt{(-5)^2+10^2}.\sqrt{1^2+(-1)^2}}=\frac{3\sqrt{10}}{10}\)
Lời giải
Chọn C
Vectơ pháp tuyến của d1; d2 lần lượt là n 1 → ( 2 ; 1 ) ; n 2 → ( 1 ; 1 )
Cos( d1; d2) =
Đường thẳng \(\Delta_1\) nhận \(\overrightarrow{u_1}=\left(1;-2\right)\) là 1 vtcp
Đường thẳng \(\Delta_2\) nhận \(\left(1;-1\right)\) là 1 vtcp
\(\Rightarrow cos\left(\Delta_1;\Delta_2\right)=\dfrac{\left|\overrightarrow{u_1}.\overrightarrow{u_2}\right|}{\left|\overrightarrow{u_1}\right|.\left|\overrightarrow{u_2}\right|}=\dfrac{\left|1.1+\left(-2\right).\left(-1\right)\right|}{\sqrt{1^2+\left(-2\right)^2}.\sqrt{1^2+\left(-1\right)^2}}=\dfrac{3}{\sqrt{10}}\)
a) Tọa độ giao điểm của hai đường thẳng là nghiệm của hệ sau:
\(\left\{ \begin{array}{l}x - y + 2 = 0\\x + y + 4 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = - 3\\y = - 1\end{array} \right.\)
\(\cos \left( {{d_1},{d_2}} \right) = \frac{{\left| {1.1 + ( - 1).1} \right|}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2}} .\sqrt {{1^2} + {1^2}} }} = 0 \Rightarrow {d_1} \bot {d_2}\)
Vậy hai đường thẳng \({d_1}\) và \({d_2}\) vuông góc với nhau tại điểm có tọa độ \(( - 3; - 1)\)
b) Đường thẳng \({d_1}\) có phương trình tổng quát là: \({d_1}:2x - y + 1 = 0\)
Tọa độ giao điểm của hai đường thẳng là nghiệm của hệ sau:
\(\left\{ \begin{array}{l}2x - y + 1 = 0\\x - 3y + 2 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = - \frac{1}{5}\\y = \frac{3}{5}\end{array} \right.\)
\(\cos \left( {{d_1},{d_2}} \right) = \frac{{\left| {2.\left( { - 1} \right) + 1.( - 3)} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2}} .\sqrt {{1^2} + {{\left( { - 3} \right)}^2}} }} = \frac{{\sqrt 2 }}{2} \Rightarrow \left( {{d_1},{d_2}} \right) = 45^\circ \)
Vậy hai đường thẳng \({d_1}\) và \({d_2}\) cắt nhau tại điểm có tọa độ \(\left( { - \frac{1}{5};\frac{3}{5}} \right)\) và góc giữa chúng là \(45^\circ \)
c) Đường thẳng \({d_1}\) và \({d_2}\) lần lượt có phương trình tổng quát là:
\({d_1}:3x + y - 11 = 0,{d_2}:x - 3y + 8 = 0\)
Tọa độ giao điểm của hai đường thẳng là nghiệm của hệ sau:
\(\left\{ \begin{array}{l}3x + y - 11 = 0\\x - 3y + 8 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \frac{5}{2}\\y = \frac{7}{2}\end{array} \right.\)
\(\cos \left( {{d_1},{d_2}} \right) = \frac{{\left| {3.1 + 1.( - 3)} \right|}}{{\sqrt {{3^2} + {1^2}} .\sqrt {{1^2} + {{\left( { - 3} \right)}^2}} }} = 0 \Rightarrow \left( {{d_1},{d_2}} \right) = 90^\circ \)
Vậy hai đường thẳng \({d_1}\) và \({d_2}\) vuông góc tại điểm có tọa độ \(\left( {\frac{5}{2};\frac{7}{2}} \right)\)
Trước hết ta thấy \(\left(m-3\right)^2+\left(m-1\right)^2>0;\left(m-2\right)^2+\left(m+1\right)^2>0\forall m\)
Ta có: \(cos\left(d;\Delta\right)=cos90^o\)
\(\Leftrightarrow\dfrac{\left|\left(m-3\right)\left(m-1\right)-\left(m-1\right)\left(m+1\right)\right|}{\sqrt{\left(m-3\right)^2+\left(m-1\right)^2}.\sqrt{\left(m-2\right)^2+\left(m+1\right)^2}}=0\)
\(\Leftrightarrow\dfrac{\left|4-4m\right|}{\sqrt{\left(m-3\right)^2+\left(m-1\right)^2}.\sqrt{\left(m-2\right)^2+\left(m+1\right)^2}}=0\)
\(\Leftrightarrow m=1\)
Chọn đáp án D.