K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2016

chtt nha huyền trần thị thanh

A B C E F D

hình chỉ minh họa thôi nhé mk sẽ giải cho 

3 tháng 3 2016

vì AD=BE=CF nên AD,BE,CF là đường cao là trung trực là tung tuyến phân giác mà 3 đường cao đi qua 1 điểm , điểm này cách đều D,E,F nên tam giác DEF là tam giac đều 

6 tháng 9 2017

17 tháng 3 2020

Xét ΔABCΔABC là tam giác đều (gt)

=> {ABCˆ=ACBˆ=BACˆAB=AC=BC{ABC^=ACB^=BAC^AB=AC=BC (tính chất tam giác đều)

Có : ⎧⎩⎨⎪⎪D∈ABE∈BCF∈AC{D∈ABE∈BCF∈AC (gt)

=> ⎧⎩⎨⎪⎪AB=AD+BDAC=CF+CFBC=BE+CE{AB=AD+BDAC=CF+CFBC=BE+CE

Mà : {AD=BE=CFAB=AC=BC{AD=BE=CFAB=AC=BC (cmt)

=> BD=AF=CEBD=AF=CE

Xét ΔADF;ΔBEDΔADF;ΔBED có :

AF=BD(cmt)AF=BD(cmt)

DAFˆ=EBDˆDAF^=EBD^ (gt)

AD=BE(cmt)AD=BE(cmt)

=> ΔADF=ΔBED(c.g.c)ΔADF=ΔBED(c.g.c)

=> DF=DEDF=DE (2 cạnh tương ứng) (1)

Xét ΔADF;ΔCEFΔADF;ΔCEF có :

AF=EC(cmt)AF=EC(cmt)

DAFˆ=FCEˆDAF^=FCE^ (tam giác ABC đều - gt)

DA=FC(cmt)DA=FC(cmt)

=> ΔADF=ΔCEF(c.g.c)ΔADF=ΔCEF(c.g.c)

=> DF=EFDF=EF ( 2 cạnh tương ứng) (2)

- Từ (1) và (2) => DF=DE=EFDF=DE=EF

Xét ΔDEFΔDEF có :

DF=DE=EFDF=DE=EF (cmt)

=> ΔDEFΔDEF là tam giác đều (đpcm)

14 tháng 3 2015

Tam giác ABC đều

=> Góc A=Góc B=Góc C

Chứng minh Tam giác ADE và Tam giác BED:

AD=BE

Góc A=Góc B

AF=BD

=> Tam giác ADE=Tam giác EBD(c.g.c)                                               (1)

=>DF=ED                                                                                           (3)

Tương tự chứng minh Tam giác ECF=Tam giác FAD(c.g.c)                        (2)

EF=DF                                                                                                (4)

Từ (1) và (2) =>Tam giác BED=Tam giác CFE

=>ED=FE                                                                                            (5)

Từ (3);(4);(5) => DF=DE=FE

=> Tam giác DEF là tam giác đều

 

 

14 tháng 3 2015

hình như đề sai, phải có điểm F chứ

17 tháng 11 2017

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Ta có: AB = AD +DB (1)

BC = BE + EC (2)

AC = AF + FC (3)

AB = AC = BC ( vì tam giác ABC là tam giác đều) (4)

AD = BE = CF ( giả thiết) (5)

Từ (1), (2), (3) và (4),(5) suy ra: BD = EC = AF

Xét ΔADF và ΔBED, ta có:

AD = BE (gt)

∠A =∠B =60o (vì tam giác ABC đều)

AF = BD (chứng minh trên)

suy ra: ΔADF= ΔBED (c.g.c)

⇒ DF=ED (hai cạnh tương ứng) (6)

Xét ΔADF và ΔCFE, ta có:

AD = CF (gt)

∠A =∠C =60o (vì tam giác ABC đều)

AF = CE (chứng minh trên)

suy ra: ΔADF= ΔCFE (c.g.c)

Nên: DF = FE (hai cạnh tương ứng) (7)

Từ (6) và (7) suy ra: DF = ED = FE

Vậy tam giác DFE đều

30 tháng 10 2019