K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2017

Giải Bài 79 trang 15 SBT Toán 6 Tập 1 | Giải Sách bài tập Toán 6

10 tháng 10 2017

Mình có cách phân tích khác nhé : vui

Gọi A là \(\overline{abc}\) thì ta được : B = \(\overline{abc}.1000+\overline{abc}\)

Theo bài ra ta có :

\(\left(\overline{abc}.1000+\overline{abc}\right):7:11:13=\overline{abc}\)

\(\overline{abc}\left(1000+1\right)=\overline{abc}.7.11.13\)

\(\overline{abc}.1001=\overline{abc}.1001\)

20 tháng 5 2017

(A=overline{abc}), (B=overline{abcabc}).Ta có:

(overline{abc}).7.11.13=(overline{abc}).1001=(overline{abcabc}) nên

(overline{abcabc}):7:11:13=(overline{abc})

7 tháng 9 2017

biet chet lien

8 tháng 9 2017

Giả sử A là abc¯abc¯

=> B=abcabc¯B=abcabc¯

Ta có

abc¯.1001=abcabc¯abc¯.1001=abcabc¯

=> abc¯=abcabc¯:1001abc¯=abcabc¯:1001 (1)

Mặt khác

Giải giả thiết ta được

abcabc¯:7:11:13=abc¯abcabc¯:7:11:13=abc¯

=> abcabc¯:(7.11.13)=abc¯abcabc¯:(7.11.13)=abc¯

=> abcabc¯:1001=abc¯abcabc¯:1001=abc¯

15 tháng 8 2015

Gọi A là abc thì B=abc.1000+abc

Theo đề bài ta có 

(abc.1000+abc):7:11:13=abc

abc(1000+1)=abc.1001

abc(1000+1)=abc.1001

Vậy đó mình giải thích xong rồi suy ra B:7:11:13=A

13 tháng 9 2016

Người trên trả lời tạm được

30 tháng 9 2017

Gọi A là abc thì

B=abc.1000+abc

Theo đề bài ta có

(abc.1000+abc):7:11:13=abc

abc(1000+1)=abc.1001

abc(1000+1)=abc.1001

Vậy đó mình giải thích xong rồi suy ra

B:7:11:13=A

21 tháng 9 2016

Gọi số A là abc. Khi đó số B là abcabc.
Phân tích B=abcabc=abc000+abc=abc.1000+abc=abc.1001=abc.7.11.13.
Bây giờ chia B cho 7,11,13 thì sẽ được A thôi! 
 

21 tháng 9 2016

Viết một số A  bất kì có 3 chữ số , viết tiếp 3 chữ số đó một lần nữa , được số B  có 6 chữ số . Chia số B cho 7 , rồi chia thương tìm được cho 11 , sau đó lại chia thương tìm được cho 13 . Kết quả được số A , hãy giải thích vì sao ?

Gọi số A là abc. Khi đó số B là abcabc.
Phân tích B=abcabc=abc000+abc=abc.1000+abc=abc.1001=abc.7.11.13.
Bây giờ chia B cho 7,11,13 thì sẽ được A thôi!