K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2017

a) \(sin6\alpha cot3\alpha cos6\alpha=2.sin3\alpha.cos3\alpha\dfrac{cos3\alpha}{sin3\alpha}-cos6\alpha\)
\(=2cos^23\alpha-\left(2cos^23\alpha-1\right)=1\) (Không phụ thuộc vào x).

10 tháng 5 2017

b) \(\left[tan\left(90^o-\alpha\right)-cot\left(90^o+\alpha\right)\right]^2\)\(-\left[cot\left(180^o+\alpha\right)+cot\left(270^o+\alpha\right)\right]^2\)
\(=\left[cot\alpha+cot\left(90^o-\alpha\right)\right]^2\)\(-\left[cot\alpha+cot\left(90^o+\alpha\right)\right]^2\)
\(=\left[cot\alpha+tan\alpha\right]^2-\left[cot\alpha-tan\alpha\right]^2\)
\(=4tan\alpha cot\alpha=4\). (Không phụ thuộc vào \(\alpha\)).

NV
4 tháng 8 2021

\(\dfrac{sin\left(a-b\right)}{sina.sinb}+\dfrac{sin\left(b-c\right)}{sinb.sinc}+\dfrac{sin\left(c-a\right)}{sinc.sina}\)

\(=\dfrac{sina.cosb-cosa.sinb}{sina.sinb}+\dfrac{sinb.cosc-cosb.sinc}{sinb.sinc}+\dfrac{sinc.cosa-cosc.sina}{sina.sinc}\)

\(=\dfrac{cosb}{sinb}-\dfrac{cosa}{sina}+\dfrac{cosc}{sincc}-\dfrac{cosb}{sinb}+\dfrac{cosa}{sina}-\dfrac{cosc}{sincc}\)

\(=0\)

10 tháng 5 2017

a) \(\dfrac{tan\alpha-tan\beta}{cot\beta-cot\alpha}=\dfrac{\dfrac{sin\alpha}{cos\alpha}-\dfrac{sin\beta}{cos\beta}}{\dfrac{cos\beta}{sin\beta}-\dfrac{cos\alpha}{sin\alpha}}\)
\(=\dfrac{\dfrac{sin\alpha cos\beta-cos\alpha sin\beta}{cos\alpha cos\beta}}{\dfrac{cos\beta sin\alpha-cos\alpha sin\beta}{sin\beta sin\alpha}}\)
\(=\dfrac{sin\beta sin\alpha}{cos\beta cos\alpha}=tan\alpha tan\beta\).

10 tháng 5 2017

b) \(tan100^o+\dfrac{sin530^o}{1+sin640^o}=tan100^o+\dfrac{sin170^o}{1+sin280^o}\)
\(=-cot10^o+\dfrac{sin10^o}{1-sin80^o}\)\(=\dfrac{-cos10^o}{sin10^o}+\dfrac{sin10^o}{1-cos10^o}\)
\(=\dfrac{-cos10^o+cos^210^o+sin^210^o}{sin10^o\left(1-cos10^o\right)}\) \(=\dfrac{1-cos10^o}{sin10^o\left(1-cos10^o\right)}=\dfrac{1}{sin10^o}\) .

7 tháng 7 2015

A B C D

Trước tiên ta chứng minh công thức sau:

\(\cot\frac{A}{2}=\frac{1+\cos A}{\sin A}\)

Xét ΔABC vuông tại A; CD là phân giác góc C
=> \(\cot ACD=\frac{AC}{AD}=\frac{BC}{BD}\text{ (do t/c phân giác) }=\frac{AC+BC}{AD+BD}=\frac{AC+BC}{AB}\)

\(=\frac{1+\frac{AC}{BC}}{\frac{AB}{BC}}=\frac{1+\cos C}{\sin C}\text{ (đpcm).}\)

\(\Rightarrow\cot\frac{A}{2}=\frac{1+\cos A}{\sin A}\text{ (đối với góc A nhọn)}\)

*Áp dụng vào bài, 

Ta có: M thuộc đường tròn đường kính AB => ΔMAB vuông tại M
\(\Rightarrow\cot\beta=\cot\frac{B}{2}=\frac{1+\cos B}{\sin B}=\frac{1+\frac{MB}{AB}}{\frac{MA}{AB}}=\frac{AB+y}{x}=\frac{2R+y}{x}\)

Tương tự: \(\cot\alpha=\frac{2R+x}{y}\)

\(\Rightarrow x\left(\cot\beta-1\right)+y\left(\cot\alpha-1\right)=x\left(\frac{2R+y}{x}-1\right)+y\left(\frac{2R+x}{y}-1\right)\)

\(=2R+y-x+2R+x-y=4R\)