Cho hình chóp S.ABCD có đáy là hình hình hành ABCD. Tìm giao tuyến của các cặp mặt phẳng sau đây:
a) (SAC) và (SBD);
b) (SAB) và (SCD);
c) (SAD) và (SBC).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Gọi \(I=AC\cap BD\)
Mà \(AC\in\left(SAC\right);BD\in\left(SBD\right)\)
\(\Rightarrow I=\left(SAC\right)\cap\left(SBD\right)\)
Lại có \(S=\left(SAC\right)\cap\left(SBD\right)\Rightarrow SI\) là giao tuyến cần tìm.
b, Gọi \(K=AC\cap BM\)
Mà \(AC\in\left(SAC\right);BM\in\left(SBM\right)\)
\(\Rightarrow K=\left(SAC\right)\cap\left(SBM\right)\)
Lại có \(S=\left(SAC\right)\cap\left(SBM\right)\Rightarrow SK\) là giao tuyến cần tìm.
c, Gọi \(N=AD\cap BM\)
Mà \(AD\in\left(SAD\right);BM\in\left(SBM\right)\)
\(\Rightarrow N=\left(SAD\right)\cap\left(SBM\right)\)
Lại có \(S=\left(SAD\right)\cap\left(SBM\right)\Rightarrow SN\) là giao tuyến cần tìm.
d, Gọi \(T=AM\cap BC\)
Mà \(AM\in\left(SAM\right);BC\in\left(BMC\right)\)
\(\Rightarrow T=\left(SAM\right)\cap\left(SBC\right)\)
Lại có \(S=\left(SAM\right)\cap\left(SBC\right)\Rightarrow ST\) là giao tuyến cần tìm.
\(\left\{{}\begin{matrix}S=\left(SAC\right)\cap\left(SBD\right)\\O=\left(SAC\right)\cap\left(SBD\right)\end{matrix}\right.\) \(\Rightarrow SO=\left(SAC\right)\cap\left(SBD\right)\)
b.
Trong mp (SAC), nối MO kéo dài cắt SC kéo dài tại H
\(\left\{{}\begin{matrix}H\in MO\\H\in SC\in\left(SCD\right)\end{matrix}\right.\) \(\Rightarrow H=MO\cap\left(SCD\right)\)
Áp dụng định lý Talet trong tam giác KAD:
\(\dfrac{KB}{KA}=\dfrac{KC}{KD}=\dfrac{BC}{AD}=\dfrac{1}{2}\)
\(\Rightarrow B,C\) lần lượt là trung điểm AK và DK
Mà E, F là trung điểm SA, SD
\(\Rightarrow\) M, N lần lượt là trọng tâm các tam giác SAK và SDK
\(\Rightarrow\dfrac{SM}{SB}=\dfrac{2}{3}\) ; \(\dfrac{SN}{SC}=\dfrac{2}{3}\)
\(\Rightarrow\dfrac{MN}{BC}=\dfrac{SM}{SB}=\dfrac{SN}{SC}=\dfrac{2}{3}\) (Talet)
\(\Rightarrow MN=\dfrac{2}{3}BC=\dfrac{2}{3}.\dfrac{1}{2}AD=\dfrac{1}{3}AD\)
Lại có EF là đường trung bình tam giác SAD \(\Rightarrow EF=\dfrac{1}{2}AD\)
\(\Rightarrow\dfrac{S_{KMN}}{S_{KEF}}=\dfrac{MN}{EF}=\dfrac{\dfrac{1}{3}AD}{\dfrac{1}{2}AD}=\dfrac{2}{3}\)
a: Trong mp(ABCD), Gọi giao của AC và BD là O
\(O\in AC\subset\left(SAC\right)\)
\(O\in BD\subset\left(SBD\right)\)
Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\)
mà S thuộc (SAC) giao (SBD)
nên (SAC) giao (SBD)=SO
b:Trong mp(ABCD), Gọi giao của AB và CD là M
\(M\in AB\subset\left(SAB\right)\)
\(M\in CD\subset\left(SCD\right)\)
=>M thuộc (SAB) giao (SCD)
mà S thuộc (SAB) giao (SCD)
nên (SAB) giao (SCD)=SM
c: Trong mp(ABCD), gọi N là giao của AD với BC
\(N\in AD\subset\left(SAD\right);N\in BC\subset\left(SBC\right)\)
Do đó: \(N\in\left(SAD\right)\cap\left(SBC\right)\)
mà \(S\in\left(SAD\right)\cap\left(SBC\right)\)
nên \(\left(SAD\right)\cap\left(SBC\right)=SN\)
a)
Ta có:
Giả sử:
⇒ O ∈ (SAC) ∩ (SBD)
⇒ (SAC) ∩ (SBD) = SO
b) Ta có:
Ta lại có
c) Lập luận tương tự câu b) ta có ⇒ (SAD) ∩ (SBC) = Sy và Sy // AD // BC.