cho tam giác ABC và tia phân giác AD. Qua D kẻ đường thẳng song song với AB, cắt AC ở E, Qua E kẻ đường thẳng song song với BC, cắt AB ở K. chứng minh rằng AE = BK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình tự vẽ nha bạn
Vì AD là đường phân giác của góc A
=> \(\widehat{BAD}=\widehat{DAE}\)
Vì AB//ED =>\(\widehat{BAD}=\widehat{EDA}\)(2 góc so le trong)
Mà góc BAD=góc DAE=> \(\widehat{DAE}=\widehat{EDA}\)
=> tam giác EAD cân tại E
=>EA=ED
Ta có: AB//ED cắt FE//BC => BF=ED(theo tính chất đoạn chắn)
Mà EA=ED=> AE=BF(=ED)
1: góc EDA=góc BAD
=>góc EDA=góc EAD
=>ΔEAD cân tại E
2:
Xét tứ giác BKED có
BK//ED
KE//BD
=>BKED là hbh
=>BK=ED và KE=BD
Xét ΔBKD và ΔEDK có
BK=ED
KD chung
BD=EK
=>ΔBKD=ΔEDK
1: góc EDA=góc BAD
góc EAD=góc BAD
=>góc EDA=góc EAD
=>ΔEAD cân tại E
2: Xét tứ giác BKED có
BK//ED
KE//BD
=>BKED là hình bình hành
Xét ΔBKD và ΔEDK có
BK=ED
BD=EK
DK chung
=>ΔBKD=ΔEDK
3: BK+DE=DE+EA>AD
Gọi Bx là tia đối của tia BA. Lấy E trên AC sao cho AB = AE
Xét tam giác BAD=EAD c-g-c => BD = DE và DEC = CBx
Trong tam giác ABC, BAC + ABC + ACB = 180 => ACB = 180 - BAC - ABC => ACB < 180 - ABC
Ta có DBx + ABC = 180 (hai góc kề bù) => DBx = 180 - ABC
=>ACB < DBx => ACB < DEC => Trong tam giác DEC, DC > DE (Quan hệ giữa góc và cạnh)
Vậy BD < DC