Rút gọn các biểu thức:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d: \(D=x^3-6x^2+12x-100\)
\(=x^3-6x^2+12x-8-92\)
\(=\left(x-2\right)^3-92\)
Khi x=-98 thì \(D=\left(-98-2\right)^3-92=-1000000-92=-1000092\)
e: \(E=\left(x+1\right)^3+6\left(x+1\right)^2+12x+20\)
\(=\left(x+1\right)^3+6\left(x+1\right)^2+12\left(x+1\right)+8\)
\(=\left(x+1+2\right)^3\)
\(=\left(x+3\right)^3\)
Khi x=5 thì \(E=\left(5+3\right)^3=8^3=512\)
f: \(F=\left(2x-1\right)\left(4x^2+2x+1\right)-7\left(x^3+1\right)\)
\(=\left(2x\right)^3-1^3-7x^3-7\)
\(=x^3-8\)
Khi x=-1/2 thì \(F=\left(-\dfrac{1}{2}\right)^3-8=-\dfrac{1}{8}-8=-\dfrac{65}{8}\)
g: \(G=\left(-x-2\right)^3+\left(2x-4\right)\left(x^2+2x+4\right)-x^2\left(x-6\right)\)
\(=-\left(x+2\right)^3+2\left(x-2\right)\left(x^2+2x+4\right)-x^3+6x^2\)
\(=-x^3-6x^2-12x-8+2\left(x^3-8\right)-x^3+6x^2\)
\(=-2x^3-12x-8+2x^3-16=-12x-24\)
Khi x=-2 thì \(G=-12\cdot\left(-2\right)-24=24-24=0\)
h: \(H=\left(x-1\right)^3-\left(x+2\right)\left(x^2-2x+4\right)+3\left(x+4\right)\left(x-4\right)\)
\(=x^3-3x^2+3x-1-\left(x^3+8\right)+3\left(x^2-16\right)\)
\(=x^3-3x^2+3x-1-x^3-8+3x^2-48\)
\(=3x-57\)
Khi x=-1/2 thì \(H=3\cdot\dfrac{-1}{2}-57=-1,5-57=-58,5\)
\(\frac{1}{3-\sqrt{7}}-\frac{1}{3+\sqrt{7}}=\frac{3+\sqrt{7}}{\left(3-\sqrt{7}\right)\left(3+\sqrt{7}\right)}-\frac{3-\sqrt{7}}{\left(3-\sqrt{7}\right)\left(3+\sqrt{7}\right)}\)
\(=\frac{3+\sqrt{7}-3+\sqrt{7}}{\left(3-\sqrt{7}\right)\left(3+\sqrt{7}\right)}=\frac{2\sqrt{7}}{9-7}=\sqrt{7}\)
a, \(\frac{1}{3-\sqrt{7}}-\frac{1}{3+\sqrt{7}}=\frac{3+\sqrt[]{7}-3+\sqrt{7}}{\left(3-\sqrt{7}\right)\left(3+\sqrt{7}\right)}\)
\(=\frac{2\sqrt{7}}{9-7}=\sqrt{7}\)
Ta có: \(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}:\dfrac{\sqrt{x}-1+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x-1}{\sqrt{x}}\)
\(\dfrac{\left(x\sqrt{x}+y\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}=\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)=x-y\)
\(C=\sqrt{\dfrac{x-6\sqrt{x}+9}{x+6\sqrt{x}+9}}=\sqrt{\dfrac{\left(\sqrt{x}-3\right)^2}{\left(\sqrt{x}+3\right)^2}}=\dfrac{\left|\sqrt{x}-3\right|}{\sqrt{x}+3}\)
Vì \(x\ge9\Rightarrow\sqrt{x}\ge3\Leftrightarrow\sqrt{x}-3\ge0\)
\(\Rightarrow C=\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\)
\(D=\dfrac{x-1}{\sqrt{y}-1}.\sqrt{\dfrac{y-2\sqrt{y}+1}{\left(x-1\right)^4}}\) (\(x;y\ne1;y\ge0\))
\(=\dfrac{x-1}{\sqrt{y}-1}.\dfrac{\sqrt{\left(\sqrt{y}-1\right)^2}}{\left(x-1\right)^2}=\dfrac{\left|\sqrt{y}-1\right|}{\left(\sqrt{y}-1\right)\left(x-1\right)}\)
TH1: \(\sqrt{y}-1>0\Leftrightarrow y>1\)
\(\Rightarrow D=\dfrac{\sqrt{y}-1}{\left(\sqrt{y}-1\right)\left(x-1\right)}=\dfrac{1}{x-1}\)
TH2:\(\sqrt{y}-1< 0\Leftrightarrow0\le y< 1\)
\(\Rightarrow D=\dfrac{-\left(\sqrt{y}-1\right)}{\left(\sqrt{y}-1\right)\left(x-1\right)}=\dfrac{-1}{x-1}\)
Vậy...
\(E=\dfrac{1}{2x-1}.\sqrt{5x^4\left(1-4x+4x^2\right)}\)
\(=\dfrac{1}{2x-1}\sqrt{5x^4\left(2x-1\right)^2}=\dfrac{\sqrt{5}x^2\left|2x-1\right|}{2x-1}\)
TH1: \(2x-1>0\Leftrightarrow x>\dfrac{1}{2}\)
\(\Rightarrow E=\dfrac{\sqrt{5}x^2\left(2x-1\right)}{2x-1}=\sqrt{5}x^2\)
TH2:\(2x-1< 0\Leftrightarrow x< \dfrac{1}{2}\)
\(\Rightarrow E=\dfrac{-\sqrt{5}x^2\left(2x-1\right)}{2x-1}=-\sqrt{5}x^2\)
Vậy...
c)
\(C=\sqrt{\dfrac{x-6\sqrt{x}+9}{x+6\sqrt{x}+9}}=\sqrt{\dfrac{\left(\sqrt{x}-3\right)^2}{\left(\sqrt{x}+3\right)^2}}=\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\)
d)
\(D=\dfrac{x-1}{\sqrt{y}-1}.\sqrt{\dfrac{y-2\sqrt{y}+1}{\left(x-1\right)^4}}=\dfrac{x-1}{\sqrt{y}-1}.\dfrac{\left|\sqrt{y}-1\right|}{\left(x-1\right)^2}=\dfrac{\left|\sqrt{y}-1\right|}{\left(\sqrt{y}-1\right)\left(x-1\right)}\)
e)
\(E=\dfrac{1}{2x-1}.\sqrt{5x^4\left(1-4x+4x^2\right)}=\dfrac{1}{2x-1}.\sqrt{5x^4.\left(2x-1\right)^2}=\dfrac{1}{2x-1}.\sqrt{5}x^2.\left|2x-1\right|\)
\(\sqrt{\dfrac{x}{y}}+\sqrt{xy}+\dfrac{x}{y}\sqrt{\dfrac{y}{x}}=\sqrt{\dfrac{x}{y}}+\sqrt{\dfrac{x}{y}}\cdot\sqrt{y^2}+\sqrt{\dfrac{x}{y}}\cdot\sqrt{\dfrac{x}{y}\cdot\dfrac{y}{x}}=\sqrt{\dfrac{x}{y}}\cdot\left(1+y+1\right)=\sqrt{\dfrac{x}{y}}\cdot\left(y+2\right)\)
Ta có: \(\sqrt{\dfrac{x}{y}}+\sqrt{xy}+\dfrac{x}{y}\cdot\sqrt{\dfrac{y}{x}}\)
\(=\dfrac{\sqrt{x}}{\sqrt{y}}+\dfrac{\sqrt{x}}{\sqrt{y}}+\sqrt{xy}\)
\(=\dfrac{2\sqrt{x}}{\sqrt{y}}+\dfrac{y\sqrt{x}}{\sqrt{y}}\)
\(=\dfrac{2\sqrt{x}+y\sqrt{x}}{\sqrt{y}}\)
\(1,\dfrac{\sqrt{27\left(x-5\right)^2}}{\sqrt{3}}\left(dkxd:x\ge5\right)\)
\(=\dfrac{\sqrt{27}.\sqrt{\left(x-5\right)^2}}{\sqrt{3}}\)
\(=\dfrac{\sqrt{3}.\sqrt{3^2}.\left|x-5\right|}{\sqrt{3}}\)
\(=3\left(x-5\right)\)
\(=3x-15\)
\(2,\dfrac{\sqrt{\left(x-4\right)^2}}{\sqrt{9\left(x-4\right)^2}}\left(dkxd:x< 4\right)\)
\(=\dfrac{\left|x-4\right|}{\sqrt{9}.\left|x-4\right|}\)
\(=\dfrac{1}{\sqrt{3}^2}\)
\(=\dfrac{1}{3}\)
\(1,\dfrac{\sqrt{27\left(x-5\right)^2}}{\sqrt{3}}\\ =\dfrac{\sqrt{27}.\sqrt{\left(x-5\right)^2}}{\sqrt{3}}\\ =\dfrac{3\sqrt{3}.\left|x-5\right|}{\sqrt{3}}=3.\left(x-5\right)=3-15\\ 2,\dfrac{\sqrt{\left(x-4\right)^2}}{\sqrt{9\left(x-4\right)^2}}\\ =\dfrac{\left|x-4\right|}{\sqrt{9}.\sqrt{\left(x-4\right)^2}}\\ =\dfrac{\left|x-4\right|}{\sqrt{9}.\left|x-4\right|}=\dfrac{4-x}{3.\left(4-x\right)}=\dfrac{1}{3}\)