Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+x:0,25+x.2+x:0,125=0,45\)
\(\Leftrightarrow x+x:\dfrac{1}{4}+x.2+x:\dfrac{1}{8}=0,45\)
\(\Leftrightarrow x+x.4+x.2+x.8=0,45\)
\(\Leftrightarrow x\left(1+4+2+8\right)=0,45\)
\(\Leftrightarrow x.15=0,45\)
\(\Leftrightarrow x=0,03\)
X + X : 0.25 + X x 2 + X : 0.125 = 0.45
X + X x 4 + X x 2 + X x 8 = 0.45
X x (1+4+2+8)= 0.45
X x 15 = 0.45
X= 0.45 : 15
X= 0.03
45 If there were eggs in the fried, I'd make a cake for you
46 She's as beautiful as her friend
47 If your test score is high, your father will give you a reward
48 My son is taller than may daughter
49 If Nam had a camera, he'd take some pictures of his trip
50 Phong doens't have enough money, so he can't travel
Lời giải:
\(\lim\limits_{x\to 2-}y=\lim\limits_{x\to 2-}\frac{\sqrt{4-x^2}}{(x-2)(x-3)}=\lim\limits_{x\to 2-}\frac{\sqrt{2+x}}{\sqrt{2-x}(x-3)}=-\infty \) nên $x=2$ là TCĐ
Vì \(x\in [-2;2)\) nên không tồn tại \(\lim\limits_{x\to +\infty }y\) nên đths không có TCN
Còn $x=3$ không thể là TCĐ vì tại $x=3$ thì $\sqrt{4-x^2}$ không tồn tại .
Em có bài này muốn hỏi mọi người ạ, em đã cô lập được logy(x) nhưng tìm max min 2 ẩn vẫn khó quá :(.
Đề bài liệu có chính xác không nhỉ? Mình chỉ có thể tìm được max bằng \(2\sqrt{2}\) (xảy ra khi \(lnx=\sqrt{2}\) và \(lny=\dfrac{1}{2}\)) và ko thể tìm được min.
À rồi OK, suy nghĩ hơi cồng kềnh 1 xíu nên hướng tìm min bị sai:
Giả thiết tương đương: \(y^{\sqrt{4-ln^2x}}=x^{1-lny}\)
\(\Rightarrow\sqrt{4-ln^2x}.lny=\left(1-lny\right)lnx\) (1)
Do \(y\ne1\Rightarrow lny\ne0\)
Nên (1) tương đương: \(\sqrt{4-ln^2x}=\left(\dfrac{1-lny}{lny}\right)lnx\) (2)
Đặt \(\left\{{}\begin{matrix}lnx=a\\lny=b\end{matrix}\right.\) thì \(log_yx=\dfrac{a}{b}\)
(2) trở thành: \(\sqrt{4-a^2}=\left(\dfrac{1-b}{b}\right)a\)
\(\Rightarrow\sqrt{4-a^2}=\dfrac{a}{b}-a\Rightarrow\dfrac{a}{b}=\sqrt{4-a^2}+a\)
Xét hàm \(f\left(a\right)=\sqrt{4-a^2}+a\) trên \(\left[-2;2\right]\)
\(f'\left(a\right)=1-\dfrac{a}{\sqrt{4-a^2}}=0\Rightarrow a=\sqrt{2}\)
\(f\left(-2\right)=-2\) ; \(f\left(\sqrt{2}\right)=2\sqrt{2}\) ; \(f\left(2\right)=2\)
\(\Rightarrow f\left(a\right)_{min}=-2\) ; \(f\left(a\right)_{max}=2\sqrt{2}\)
Đáp án B
\(Q_{\left(x\right)}=x^{14}-10x^{13}+10x^{12}-10x^{11}+...+10x^2-10x+10\)
\(=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-\left(x+1\right)x^{11}+..+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)
\(=x^{14}-x^{14}-x^{13}+x^{13}+x^{12}-x^{12}-x^{11}+...+x^3+x^2-x^2-x+x+1\)
\(=1\)
\(a.P(x)=x^7-80x^6+80x^5-80x^4+....+80x+15\)
\(=x^7-79x^6-x^6+79x^5+x^5-79x^4-....-x^2+79x+x+15\)
\(=x^6(x-79)-x^5(x-79)+x^4(x-79)-....-x(x-79)+x+15\)
\(=(x-79)(x^6-x^5+x^4-....-x)+x+15\)
Thay x = 79 vào biểu thức trên , ta có
\(P(79)=(79-79)(79^6-79^5+79^4-...-79)+79+15\)
\(=0+79+15\)
\(=94\)
Vậy \(P(x)=94\)khi x = 79
\(b.Q(x)=x^{14}-10x^{13}+10x^{12}-.....+10x^2-10x+10\)
\(=x^{14}-9x^{13}-x^{13}+9x^{12}+.....-x^3+9x^2+x^2-9x-x+10\)
\(=x^{13}(x-9)-x^{12}(x-9)+.....-x^2(x-9)+x(x-9)-x+10\)
\(=(x-9)(x^{13}-x^{12}+.....-x^2+x)-x+10\)
Thay x = 9 vào biểu thức trên , ta có
\(Q(9)=(9-9)(9^{13}-9^{12}+.....-9^2+9)-9+10\)
\(=0-9+10\)
\(=1\)
Vậy \(Q(x)=1\)khi x = 9
\(c.R(x)=x^4-17x^3+17x^2-17x+20\)
\(=x^4-16x^3-x^3+16x^2+x^2-16x-x+20\)
\(=x^3(x-16)-x^2(x-16)+x(x-16)-x+20\)
\(=(x-16)(x^3-x^2+x)-x+20\)
Thay x = 16 vào biểu thức trên , ta có
\(R(16)=(16-16)(16^3-16^2+16)-16+20\)
\(=0-16+20\)
\(=4\)
Vậy \(R(x)=4\)khi x = 16
\(d.S(x)=x^{10}-13x^9+13x^8-13x^7+.....+13x^2-13x+10\)
\(=x^{10}-12x^9-x^9+12x^8+.....+x^2-12x-x+10\)
\(=x^9(x-12)-x^8(x-12)+....+x(x-12)-x+10\)
\(=(x-12)(x^9-x^8+....+x)-x+10\)
Thay x = 12 vào biểu thức trên , ta có
\(S(12)=(12-12)(12^9-12^8+....+12)-12+10\)
\(=0-12+10\)
\(=-2\)
Vậy \(S(x)=-2\)khi x = 12
Hình như đây là toán lớp 7 có trong phần trắc nghiệm của thi HSG huyện
Chúc bạn học tốt , nhớ kết bạn với mình
Tìm hai số tự nhiên liên tiếp x và y:\nX< 9 1/2 - 11/3 < Y
gúp mik đi mà