K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
6 tháng 11 2021

\(A=a^4+6a^3+11a^2+6a=a\left(a^3+a^2+5a^2+5a+6a+6\right)\)

\(=a\left(a+1\right)\left(a^2+5a+6\right)=a\left(a+1\right)\left(a+2\right)\left(a+3\right)\)

suy ra \(A\)là tích của \(4\)số nguyên liên tiếp, 

Do đó trong \(a,a+1,a+2,a+3\)có ít nhất \(1\)thừa số chia hết cho \(3\)\(1\)thừa số chia hết cho \(4\)và \(1\)thừa số chia hết cho \(2\)nhưng không chia hết cho \(4\).

Khi đó \(A\)chia hết cho \(3.4.2=24\).

27 tháng 12 2015

câu 1 bạn phân tích ra là a(a+1)(a+2)(a+3) là 4 số tự nhiên liên tiếp nên chia hết cho 24.

câu 2 bạn phân tích ra thành (a-2)(a-1)a(a+1)(a+2) là 5 số tự nhiên liên tiếp nên chia hết cho 120

bài 3 phân tích ra thành:(a-2)(a-1)a(3a-5) nhưng mình k biết nó chia hết cho 24 ở chỗ nào

 

 

12 tháng 8 2020

\(M=a^4+6a^3+11a^2+6a+24a\) 24.a chia hết cho 24 ta cần c/m

\(a^4+6a^3+11a^2+6a\) chia hết cho 24

\(a^4+6a^3+11a^2+6a=a\left(a^3+6a^2+11a+6\right)=\)

\(=a\left(a+1\right)\left(a^2+5a+6\right)=a\left(a+1\right)\left(a+2\right)\left(a+3\right)\)

Ta nhận thấy đây là tích của 4 số TN liên tiếp

Trong 4 số TN liên tiếp thì có 2 số chẵn liên tiếp 1 số chia hết cho 2 và 1 số chia hết cho 4 nên tích của chúng chia hết cho 8

Trong 4 số tự nhiên liên tiếp thì chắc chắn có 1 số chia hết cho 3

=> tích của 4 số TN liên tiếp chia hết cho 3x8=24

Nên \(a^4+6a^3+11a^2+6a⋮24\Rightarrow M⋮24\)