Giải bất phương trình: 2 - 5x <= 17
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`|5x| = - 3x + 2`
Nếu `5x>=0<=> x>=0` thì phương trình trên trở thành :
`5x =-3x+2`
`<=> 5x +3x=2`
`<=> 8x=2`
`<=> x= 2/8=1/4` ( thỏa mãn )
Nếu `5x<0<=>x<0` thì phương trình trên trở thành :
`-5x = -3x+2`
`<=>-5x+3x=2`
`<=> 2x=2`
`<=>x=1` ( không thỏa mãn )
Vậy pt đã cho có nghiệm `x=1/4`
__
`6x-2<5x+3`
`<=> 6x-5x<3+2`
`<=>x<5`
Vậy bpt đã cho có tập nghiệm `x<5`
Lời giải:
b/
\(\frac{3x+5}{2x^2-5x+3}\geq 0\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} 3x+5\geq 0\\ 2x^2-5x+3>0\end{matrix}\right.\\ \left\{\begin{matrix} 3x+5\leq 0\\ 2x^2-5x+3<0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} x\geq \frac{-5}{3}\\ x>\frac{3}{2}(\text{hoặc}) x< 1\end{matrix}\right.\\ \left\{\begin{matrix} x\leq \frac{-5}{3}\\ 1< x< \frac{3}{2}\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow \left[\begin{matrix} x>\frac{3}{2}\\ \frac{-5}{3}\leq x< 1\end{matrix}\right.\ \)
c/
$2x^3+x+3>0$
$\Leftrightarrow 2x^2(x+1)-2x(x+1)+3(x+1)>0$
$\Leftrightarrow (x+1)(2x^2-2x+3)>0$
$\Leftrightarrow (x+1)[x^2+(x-1)^2+2]>0$
$\Leftrightarrow x+1>0$
$\Leftrightarrow x>-1$
Điều kiện xác định x ≠ 1; x ≠ –2.
Ta có bảng xét dấu sau:
Dựa vào bảng xét dấu ta thấy (x + 1)(x + 5) > 0 khi x < -5 hoặc x > -1.
Kết hợp điều kiện x ≠ 1; x ≠ -2 vậy bất phương trình có tập nghiệm:
S = (–∞; -5) ∪ (-1; +∞)\{1}
ĐKXĐ: \(x>\dfrac{1}{5}\)
\(1-3x^2< \left(x+2\right)\sqrt[]{5x-1}+5x-1\)
\(\Leftrightarrow3x^2+5x-2+\left(x+2\right)\sqrt{5x-1}\ge0\)
\(\Leftrightarrow\left(x+2\right)\left(3x-1\right)+\left(x+2\right)\sqrt{5x-1}>0\)
\(\Leftrightarrow\left(x+2\right)\left(3x-1+\sqrt{5x-1}\right)>0\)
\(\Leftrightarrow3x-1+\sqrt{5x-1}>0\)
\(\Leftrightarrow\sqrt{5x-1}>1-3x\)
TH1: \(\left\{{}\begin{matrix}x\ge\dfrac{1}{5}\\1-3x< 0\end{matrix}\right.\) \(\Leftrightarrow x>\dfrac{1}{3}\)
TH2: \(\left\{{}\begin{matrix}x\le\dfrac{1}{3}\\5x-1>9x^2-6x+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{1}{3}\\9x^2-11x+2< 0\end{matrix}\right.\) \(\Rightarrow\dfrac{2}{9}< x\le\dfrac{1}{3}\)
Kết luận: \(x>\dfrac{2}{9}\)
\(\sqrt{x^2+5x+4}\ge2x+2\) (ĐKXĐ: \(x\ge-1\))
\(\Leftrightarrow x^2+5x+4=4x^2+8x+4\)
\(\Leftrightarrow-3x^2-3x=0\)
\(\Leftrightarrow-3x\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-3x=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\) (TMĐK)
Vậy \(S=\left\{0;-1\right\}\)
2x + 4 > 5x - 11
<=> 2x - 5x > -11 - 4
<=> -3x > -15
<=> -3x : ( -3 ) < -15 : ( -3 )
<=> x < 5
Vậy tập nghiệm của bất phương trình là x < 5
\(2x^2-5x+4< 0\)
<=> \(2\left(x^2-\frac{5}{2}x+2\right)< 0\)
<=> \(x^2-\frac{5}{2}x+2< 0\)
<=> \(x^2-2\times x\times\frac{5}{4}+\frac{25}{16}-\frac{25}{16}+2< 0\)
<=> \(\left(x-\frac{5}{4}\right)^2< -0,4375\)
Điều này là vô lí vì \(\left(x-\frac{5}{4}\right)^2\ge0\)
2 - 5x ≤ 17
⇔ -5x ≤ 17 - 2 (Chuyển vế và đổi dấu hạng tử 2)
⇔ -5x ≤ 15
⇔ x ≥ -3 (Chia cả hai vế cho -5 < 0, BPT đổi chiều).
Vậy nghiệm của bất phương trình là x ≥ - 3