K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2019

2x3 + 6x2 = x2 + 3x

⇔ (2x3 + 6x2) – (x2 + 3x) = 0

⇔ 2x2(x + 3) – x(x + 3) = 0

⇔ x(x + 3)(2x – 1) = 0

(Nhân tử chung là x(x + 3))

⇔ x = 0 hoặc x + 3 = 0 hoặc 2x – 1 = 0

+ x + 3 = 0 ⇔ x = -3.

+ 2x – 1 = 0 ⇔ 2x = 1 ⇔ x = 1/2.

Vậy tập nghiệm của phương trình là Giải bài 25 trang 17 SGK Toán 8 Tập 2 | Giải toán lớp 8

1 tháng 3 2023

`2x^3 +6x^2 =x^2 +3x`

`<=> 2x^3 +6x^2 -x^2 -3x=0`

`<=> 2x^3 +5x^2 -3x=0`

`<=> x(2x^2 +5x-3)=0`

`<=> x(2x^2 +6x-x-3)=0`

`<=> x[2x(x+3)-(x+3)]=0`

`<=> x(2x-1)(x+3)=0`

\(< =>\left[{}\begin{matrix}x=0\\2x-1=0\\x+3=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=-3\end{matrix}\right.\)

b)

`(2+x)^2 -(2x-5)^2=0`

`<=> (2+x-2x+5)(2+x+2x-5)=0`

`<=> (-x+7)(3x-3)=0`

\(< =>\left[{}\begin{matrix}-x+7=0\\3x-3=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=7\\x=1\end{matrix}\right.\)

1 tháng 3 2023

`a) 2x^3 + 6x^2 = x^2 + 3x`

`=> 2x^3 + 6x^2 - x^2 - 3x = 0`

`=> 2x^3 + 5x^2 - 3x = 0`

`=> x(2x^2 + 5x - 3) = 0`

`=> x (2x^2 + 6x - x - 3) = 0`

`=> x [(2x^2 + 6x) - (x+3)] = 0`

`=> x [2x(x+3) - (x+3)] = 0`

`=> x (2x - 1)(x+3) = 0`

`=> x = 0` hoặc `2x - 1 = 0` hoặc `x + 3 = 0`

`=> x = 0` hoặc `x = 1/2` hoặc `x = -3`

`b) (2+x)^2 - (2x-5)^2 = 0`

`=> (2+x+2x-5)(2+x-2x+5) = 0`

`=> (3x - 3)(7-x) = 0`

`=> 3x - 3 = 0` hoặc `7 - x = 0`

`=> x = 1` hoặc `x = 7`

 

10 tháng 2 2022

a, \(x^4-x^2-2=0\Leftrightarrow x^4-2x^2+x^2-2=0\)

\(\Leftrightarrow x^2\left(x^2-2\right)+\left(x^2-2\right)=0\Leftrightarrow\left(x^2+1>0\right)\left(x^2-2\right)=0\Leftrightarrow x=\pm\sqrt{2}\)

b, \(\Leftrightarrow x^2\left(x^2+2x+1\right)=0\Leftrightarrow x^2\left(x+1\right)^2=0\Leftrightarrow x=0;x=-1\)

c, \(\Leftrightarrow\left(x-1\right)\left(x^2+x+1>0\right)=0\Leftrightarrow x=1\)

d, \(\Leftrightarrow6x^2-3x-4x+2=0\Leftrightarrow\left(3x-2\right)\left(2x-1\right)=0\Leftrightarrow x=\dfrac{2}{3};x=\dfrac{1}{2}\)

10 tháng 2 2022

a) 

/ \(x^4+x^2-2=0\)

\(\Leftrightarrow\left(x^2\right)^2-x^2+2x^2-2=0\\ \Leftrightarrow x^2\left(x^2-1\right)+2\left(x^2-1\right)=0\\ \Leftrightarrow\left(x^2+2\right)\left(x^2-1\right)=0\\ \Leftrightarrow\left(x^2+2\right)\left(x-1\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2+2=0\\x+1=0\\x-1-0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

 

Câu 6:Thực hiện phép nhân  -2x(x2 + 3x - 4) ta được:A.-2x3 - 6x2 – 8x          B. 2x3 -6x2 – 8x      C. -2x3 - 6x2 + 8x         D. -2x3 + 3x2 -4Câu 7 : Phân tích đa thức x2 + 2xy + y2 – 9z2 thành nhân tử ta được:A. (x+y+3z)(x+y–3z)  B. (x-y+3z)(x+y–3z) C.(x - y +3z)(x - y – 3z)D. (x + y +3z)(x -y – 3z)Câu 8: Phân tích đa thức 27x3 – thành nhân tử ta...
Đọc tiếp

Câu 6:Thực hiện phép nhân  -2x(x2 + 3x - 4) ta được:

A.-2x3 - 6x2 – 8x          B. 2x3 -6x2 – 8x      C. -2x3 - 6x2 + 8x         D. -2x3 + 3x2 -4

Câu 7 : Phân tích đa thức x2 + 2xy + y2 – 9z2 thành nhân tử ta được:

A. (x+y+3z)(x+y–3z)  

B. (x-y+3z)(x+y–3z) 

C.(x - y +3z)(x - y – 3z)

D. (x + y +3z)(x -y – 3z)

Câu 8: Phân tích đa thức 27x3 – thành nhân tử ta được:

A.(3x+)(9x2-x+)  

B.(3x–)(9x2+x+) 

C.(27x–)(9x2+x+) 

 D.(27x+)(9x2+x+)  

Câu 9: Phân tích đa thức x2 + 7x + 12 thành nhân tử ta được:

A. (x - 3)( x + 4 )         B. (x + 3)( x + 4 )         C.(x + 5)( x + 2 )               D. (x -5)( x + 2 )

Câu 10:  Giá trị của biểu thức  (x2 + 4x + 4) tại x = - 2 là:

A. 4                            B. -2                          C. 0                           D. -8                 

2
23 tháng 11 2021

Câu 6:C

Câu 7:A

Câu 9:B

Câu 10:A

23 tháng 11 2021

Câu 6:Thực hiện phép nhân  -2x(x2 + 3x - 4) ta được:

A.-2x- 6x– 8x          B. 2x-6x– 8x      C. -2x- 6x+ 8x         D. -2x+ 3x-4

Câu 7 : Phân tích đa thức x2 + 2xy + y2 – 9z2 thành nhân tử ta được:

A. (x+y+3z)(x+y–3z)  

B. (x-y+3z)(x+y–3z) 

C.(x - y +3z)(x - y – 3z)

D. (x + y +3z)(x -y – 3z)

Câu 9: Phân tích đa thức x2 + 7x + 12 thành nhân tử ta được:

A. (x - 3)( x + 4 )         B. (x + 3)( x + 4 )         C.(x + 5)( x + 2 )               D. (x -5)( x + 2 )

Câu 10:  Giá trị của biểu thức  (x2 + 4x + 4) tại x = - 2 là:

A. 4                            B. -2                          C. 0                           D. -8

Mấy câu còn lại bị lỗi r nhé

29 tháng 8 2017

Giải bài 16 trang 133 SGK Toán 9 Tập 2 | Giải toán lớp 9

b) x.(x+1). ( x+ 4). (x+ 5) = 12

⇔ [ x. (x + 5)]. [(x+1). (x+ 4)] = 12

⇔ x 2 + 5 x ⋅ x 2 + 4 x + x + 4 − 12 = 0 ⇔ x 2 + 5 x ⋅ x 2 + 5 x + 4 − 12 = 0 ( * )

Đặt  t =   x 2   +   5 x   +   2

= >   x 2   +   5 x   =   t   –   2   v à   x 2   +   5 x +   4   =   t +   2

Khi đó phương trình (*) trở thành:

( t – 2). (t+ 2) - 12 = 0

⇔ t 2 − 4 − 12 = 0 ⇔ t 2 − 16 = 0 ⇔ t 2 = 16 ⇔ t = ± 4

+ Với t = 4 ta có:  x 2   +   5 x   +   2   =   4

⇔   x 2   + 5 x   –   2   =   0   ( * * )

Có a= 1, b = 5, c = - 2 và  ∆   =   5 2   –   4 . 1 . ( - 2 )   =   33   >   0

Nên (**) có 2 nghiệm phân biệt là:

Giải bài 16 trang 133 SGK Toán 9 Tập 2 | Giải toán lớp 9

* Với t = - 4 ta có:  x 2   +   5 x   +   2 =   -   4

⇔   x 2   +   5 x   +   6   =   0   ( * * * )

Có a= 1, b = 5, c= 6 và  ∆   =   5 2   –   4 . 1 . 6   =   1   >   0

Phương trình (***) có 2 nghiệm là:

Giải bài 16 trang 133 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy tập nghiệm của phương trình đã cho là:

Giải bài 16 trang 133 SGK Toán 9 Tập 2 | Giải toán lớp 9

24 tháng 7 2018

Giải bài 16 trang 133 SGK Toán 9 Tập 2 | Giải toán lớp 9

b) x.(x+1). ( x+ 4). (x+ 5) = 12

⇔ [ x. (x + 5)]. [(x+1). (x+ 4)] = 12

⇔ x 2 + 5 x ⋅ x 2 + 4 x + x + 4 − 12 = 0 ⇔ x 2 + 5 x ⋅ x 2 + 5 x + 4 − 12 = 0 ( * )

Đặt  t = x 2 + 5 x + 2

= >   x 2   +   5 x   =   t   –   2   v à   x 2   +   5 x +   4   =   t +   2

Khi đó phương trình (*) trở thành:

( t – 2). (t+ 2) - 12 = 0

⇔ t 2 - 4 - 12 = 0 ⇔ t 2 - 16 = 0 ⇔ t 2 = 16 ⇔ t = ± 4

+ Với t = 4 ta có:  x 2   +   5 x   +   2   =   4

⇔ x2 +5x – 2 = 0 (**)

Có a= 1, b = 5, c = - 2 và  ∆   =   5 2   –   4 . 1 . ( - 2 )   =   33   >   0

Nên (**) có 2 nghiệm phân biệt là:

Giải bài 16 trang 133 SGK Toán 9 Tập 2 | Giải toán lớp 9

* Với t = - 4 ta có:  x 2   +   5 x   +   2 =   -   4

⇔   x 2   +   5 x   +   6   =   0   ( * * * )

Có a= 1, b = 5, c= 6 và    ∆   =   5 2   –   4 . 1 . 6   =   1   >   0

Phương trình (***) có 2 nghiệm là:

Giải bài 16 trang 133 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy tập nghiệm của phương trình đã cho là:

Giải bài 16 trang 133 SGK Toán 9 Tập 2 | Giải toán lớp 9

14 tháng 1 2019

- Điều kiện: x ≠ ±3

- Khử mẫu và biến đổi, ta được: x2 – 3x + 6 = x + 3 ⇔ x2 – 4x + 3 = 0.

- Nghiệm của phương trình x2 – 4x + 3 = 0 là: x1 = 1; x2 = 3

x1 có thỏa mãn điều kiện nói trên

x2 không thỏa mãn điều kiện nói trên

Vậy nghiệm của phương trình đã cho là: x = 1

12 tháng 12 2017

- Điều kiện: x ≠ ±3

- Khử mẫu và biến đổi, ta được:  x 2   –   3 x   +   6   =   x   +   3   ⇔   x 2   –   4 x   +   3   =   0 .

- Nghiệm của phương trình  x 2   –   4 x   +   3   =   0   l à :   x 1   =   1 ;   x 2   =   3

x 1  có thỏa mãn điều kiện nói trên

x 2  không thỏa mãn điều kiện nói trên

Vậy nghiệm của phương trình đã cho là: x = 1

1) Ta có: \(x^2-4x+4=0\)

\(\Leftrightarrow\left(x-2\right)^2=0\)

\(\Leftrightarrow x-2=0\)

hay x=2

Vậy: S={2}