K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2018

Cách 1: 4 n + 3 2 - 25 = 4 n + 3 2 - 5 2

= (4n + 3 + 5)(4n + 3 – 5)

= (4n + 8)(4n – 2)

= 4(n + 2). 2(2n – 1)

= 8(n + 2)(2n – 1).

Vì n ∈ Z nên (n + 2)(2n – 1) ∈ Z. Do đo 8(n + 2)(2n – 1) chia hết cho 8.

Cách 2:  4 n + 3 2 - 25 = 16 n 2 + 24 n + 9 - 25  

= 16 n 2  + 24n – 16

= 8( 2 n 2  + 3n – 2).

Vì n ∈ Z nên 2 n 2  + 3n – 2 ∈ Z. Do đo 8( 2 n 2  + 3n – 2) chia hết cho 8.

\(\left(4n+3\right)^2-25\)

\(=\left(4n+3-5\right)\left(4n+3+5\right)\)

\(=\left(4n-2\right)\left(4n+8\right)\)chia hết cho 8 ( đpcm )

15 tháng 7 2016

Theo đầu bài ta có:
\(\left(4n+3\right)^2-25\)
\(\Leftrightarrow\left(4n+3\right)^2-5^2\)
\(\Leftrightarrow\left[\left(4n+3\right)+5\right]\left[\left(4n+3\right)-5\right]\)
\(\Leftrightarrow\left[4n+8\right]\left[4n-2\right]\)
\(\Leftrightarrow\left[4\left(n+2\right)\right]\left[2\left(2n-1\right)\right]\)
\(\Leftrightarrow8\left(n+2\right)\left(2n-1\right)\)
Do 8 ( n + 2 ) ( 2n - 1 ) chia hết cho 8 nên ( 4n + 3 )2 - 25 chia hết cho 8 với mọi số nguyên n.    ( đpcm )

19 tháng 9 2016

a) (4n+3)^2-25=(4n+3+5)(4n-3+5)=(4n+8)(4n-2)=16n^2-8n+32n-16

Vì 16n^2 chia hết cho 8;8n chia hết cho 8;32n chia hết cho 8;16 chia hết cho 8

=>16n^2-8n+32n-16 chia hết cho 8

b)(2n+3)^2-9

=(2n+3-3)(2n+3+3)

=2n(2n+6)=4n^2+12n

Vì 4n^2 chia hết cho 4,12n chia hết cho 4=>4n^2+12n chia hết cho 4

14 tháng 6 2017

\(a,n^5-5n^3+4n\)

\(=n\left(n^4-5n^2+4\right)\)

\(=n\left(n^4-n^2-4n^2+4\right)\)

\(=n\left[n^2\left(n^2-1\right)-4\left(n^2-4\right)\right]\)

\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮2;3;4;5\)\(\Rightarrow\) \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮120\) Hay \(n^5-5n^3+4⋮120\)

15 tháng 9 2016

a)

 \(A=\left(n+3\right)^2-\left(n-1\right)^2\\ =n^2+6n+9-n^2+2n-1\\ =\left(n^2-n^2\right)+\left(6n+2n\right)+\left(9-1\right)\\ =8n+8\\ =8\left(n+1\right)⋮8\forall n\)

\(\Rightarrow A⋮8\forall n\)

 

15 tháng 9 2016

(n + 6)2 - (n - 6)2

= (n + 6 + n - 6)(n + 6 - n + 6)

= 12 . 2n

= 24n chia hết cho 24 với mọi n thuộc Z (đpcm)

15 tháng 9 2016

a) Ta có : (n+3)^2 - (n-1)^2 = n^2 + 6n + 9 - n^2 + 2n - 1 

                                        = 8n + 8 = 8(n +1) chia hết cho 8 với mọi n nguyên

b) Ta có : (n+6)^2 - (n-6)^2 = n^2 + 12n +36 - n^2 +12n - 36

                                        = 24n chia hết cho 24 với mọi n nguyên

nhớ nha

a) (n+3)2 _(n-1)2= n2+6n+9-n2+2n-1

=8n+8 chia hết cho 8

b) tương tự

3 tháng 12 2017

Đặt A = n^6 + n^4 – 2n^2 = n^2 (n^4 + n^2 – 2) 
= n^2 (n^4 – 1 + n^2 – 1) 
= n^2 [(n^2 – 1)(n^2 + 1) + n^2 – 1] 
= n^2 (n^2 – 1)(n^2 + 2) 
= n.n.(n – 1)(n + 1)(n^2 + 2) 
+ Nếu n chẳn ta có n = 2k (k thuộc N) 
A = 4k^2 (2k – 1)(2k + 1)(4k^2 + 2) = 8k^2 (2k – 1)(2k + 1)(2k^2 + 1) 
Suy ra A chia hết cho 8 
+ Nếu n lẻ ta có n = 2k + 1 (k thuộc N) 
A = (2k + 1)^2 . 2k (2k + 2)(4k^2 + 4k + 1 + 2) 
= 4k(k + 1)(2k + 1)^2 (4k^2 + 4k + 3) 
k(k + 1) chia hết cho 2 vì là tích hai số liên tiếp 
Suy ra A chia hết cho 8 
Do đó A chia hết cho 8 với mọi n thuộc N 
* Nếu n chia hết cho 3 thì A chia hết cho 9. Nên A chia hết cho 72. 
* Nếu n không chia hết cho 3 thì n^2 là số chính phương nên chia 3 dư 1 (vì số chính phương chia 3 chỉ dư 0 hoặc 1). 
Suy ra n^2 + 2 chia hết cho 3. Mà n (n – 1)(n + 1) là tích 3 số liên tiếp nên có số chia hết cho 3. Suy ra A chia hết cho 9. Do đó A chia hết cho 72. 
Vậy A chia hết cho 72 với mọi n thuộc N.

28 tháng 10 2018

Chép hả Lý

Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp sốBài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhấtBài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ướcBài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng...
Đọc tiếp

Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp số
Bài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhất
Bài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ước
Bài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng 2): Cho 2m – 1 là số nguyên tố. Chứng minh rằng m cũng là số nguyên tố
Bài 6 ( Dạng 2): Chứng minh rằng: 2002! – 1 có mọi ước số nguyên tố lớn hơn 2002 
Bài 7 ( Dạng 3): Tìm n là số tự nhiên khác 0 để:
a) n4+ 4 là số nguyên tố
b) n2003+n2002+1 là số nguyên tố

Bài 8 ( Dạng 3): Cho a,b,c,d thuộc N* thỏa mãn ab = cd. Chứng tỏ rằng số A = an+bn+cn+dn là hợp số với mọi số tự nhiên n
Bài 9 ( Dạng 4): Tìm số nguyên tố p sao cho 2p+1 chia hết cho p
Bài 10 ( Dạng 4): Cho p là số nguyên tố lớn hơn 2. Chứng tỏ rằng có vô số số tự nhiên n thỏa mãn n.2n -1 chia hết cho p

2
4 tháng 8 2017

K MIK NHA BN !!!!!!

B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1 
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1 

* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số 

* xét p nguyên tố khác 3 => 8p không chia hết cho 3 
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3 
=> (8p-1)(8p+1) chia hết cho 3 

Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số  

B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1) 
* Xét k = 1 
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2) 
* Xét k lẻ mà k > 1 
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn 
=> k + 1 là hợp số 
=> Dãy số không có nhiều hơn 2 số nguyên tố (3) 
* Xét k chẵn , khi đó k >= 2 
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn 
=> k + 2 và k + 10 là hợp số 
=> Dãy số không có nhiều hơn 1 số nguyên tố (4) 
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất

B3:Số 36=(2^2).(3^2)

Số này có 9 ước là:1;2;3;4;6;9;12;18;36

Số tự nhiên nhỏ nhất có 6 ước là số 12.

Cho tập hợp ước của 12 là B.

B={1;2;3;4;6;12}

K MIK NHA BN !!!!!!

4 tháng 8 2017

cảm ơn bạn nha

mình k cho ban roi do