chứng minh
M = 2^2 +2^3+2^4+...+2^20 chia hết cho 10
giúp me bài này
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
NQ
1
Những câu hỏi liên quan
O
1
AH
Akai Haruma
Giáo viên
15 tháng 9 2021
Lời giải:
$3^{n+2}-2^{n+2}+3^n-2^n=9.3^n-4.2^n+3^n-2^n$
$=(9.3^n+3^n)-(4.2^n+2^n)=10.3^n-5.2^n$
$=10.3^n-10.2^{n-1}=10(3^n-2^{n-1})\vdots 10$ với mọi $n\in\mathbb{N}^*$
NH
1
KV
5 tháng 10 2023
Đặt A = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰²²
= (2 + 2² + 2³) + (2⁴ + 2⁵ + 2⁶) + ... + (2²⁰²⁰ + 2²⁰²¹ + 2²⁰²²)
= 2.(1 + 2 + 2²) + 2⁴.(1 + 2 + 2²) + ... + 2²⁰²⁰.(1 + 2 + 2²)
= 2.7 + 2⁴.7 + ... + 2²⁰²⁰.7
= 7.(2 + 2⁴ + ... + 2²⁰²⁰) ⋮ 7
Vậy A ⋮ 7
18 tháng 12 2021
a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)
\(=7\left(2+...+2^{19}\right)⋮7\)
18 tháng 12 2021
a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)
\(=7\left(2+...+2^{19}\right)⋮7\)
giúp me plssss