Trong Δ ABC có AB = 6cm, AC = 9cm. Lấy trên cạnh AB điểm B', trên cạnh AC lấy điểm C' sao cho AB' = 2cm, AC' = 3cm. Chứng minh B'C'//BC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng hệ quả trên ta có: Δ ABC, B'C'//BC; B' ∈ AB, C' ∈ AC
Khi đó ta có: AB'/AB = AC'/AC ⇔ 2/8 = 3/AC ⇒ AC = (3.8)/2 = 12( cm )
b) Trên đoạn thẳng AC ta có: AC’= AC’’= 3 cm nên
Khi đó, hai đường thẳng BC và B’C’ song song với nhau.
Theo định lý Ta - let ta có:
\(\dfrac{AB'}{AB}=\dfrac{AC'}{AC}\)
\(\Leftrightarrow\dfrac{4}{6}=\dfrac{3}{AC}\)
\(\Rightarrow\dfrac{2}{3}=\dfrac{1}{AC}\)
\(\Rightarrow2AC=3\)
\(\Rightarrow AC=\dfrac{2}{3}\)
Đáp án:
a) Vì ΔΔABC vuông tại A (Aˆ=90oA^=90o)
=> AB2+AC2=BC2AB2+AC2=BC2 (ĐL Pi-ta-go)
=> BC2=82+62=100BC2=82+62=100
=> BC=10BC=10cm
b) Vì AB = AD (gt)
mà A ∈∈ BD (gt)
=> A trung điểm BD (ĐN trung điểm)
=> CA trung tuyến BD (ĐN trung tuyến)
lại có: CA ⊥⊥ BD (AB ⊥⊥ AC do Aˆ=90oA^=90o)
=> ΔΔCBD cân tại C (dhnb)
=> BC = CD (ĐN ΔΔ cân)
và CA là phân giác của BCDˆBCD^ (t/c ΔΔ cân)
=> C1ˆ=C2ˆC1^=C2^ (ĐN tia p/g)
Xét ΔΔBEC và ΔΔDEC có:
BC = CD (cmt)
C1ˆ=C2ˆC1^=C2^ (cmt)
EC: cạnh chung
=> ΔΔBEC = ΔΔDEC (c.g.c)
c) Vì CE là trung tuyến của ΔΔBCD (cmt)
mà AEAC=26=13AEAC=26=13 (AE = 2cm, AC = 6cm)
=> E là trọng tâm ΔΔBCD (dhnb)
=> DE là trung tuyến ΔΔBCD (ĐN trọng tâm)
=> DE đi qua trung điểm của BC (ĐN trung tuyến)
a) Xét tam giác ABC vuông tại A có
\(BC^2=AB^2+AC^2\)(Định lý Pytago)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{8^2+6^2}=10\left(cm\right)\)
b) Ta có: A là trung điểm BD( do AD=AB)
\(CA\perp BD\)( do tam giác ABC vuông tại A)
=> CA là đường trung trực của đoạn thẳng BD
=> \(\left\{{}\begin{matrix}CD=CB\\\widehat{BCE}=\widehat{DCE}\end{matrix}\right.\)
Xét tam giác BEC và tam giác DEC có
CD=CB(cmt)
\(\widehat{BCE}=\widehat{DCE}\left(cmt\right)\)
CE chung
=> ΔBEC=ΔDEC(c.g.c)
a: Áp dụng tính chất của dãy tỉ số bằng nhau vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
hay BC=10(cm)
Bạn tự vẽ hình nhé
a)
Áp dụng định lý Py-ta-go vào \(\Delta ABC:\)
\(BC^2=AB^2+AC^2\\ \Rightarrow BC^2=8^2+6^2\\ \Rightarrow BC^2=64+36\\ \Rightarrow BC^2=100\\ \Rightarrow BC=10\left(cm\right)\)
b)
Xét \(\Delta BGC\) và \(\Delta DGC\) có:
\(AB=AD\left(GT\right)\\ AG:chung\\ \widehat{BAC}=\widehat{DAC}\left(=90^o\right)\)
\(\Rightarrow\Delta BGC=\Delta DGC\left(c-g-c\right)\)
c)
Xét \(\Delta BCD\) có:
\(AB=AD\left(GT\right)\\ \dfrac{AG}{DG}=\dfrac{2}{6}=\dfrac{1}{3}\Rightarrow\dfrac{CG}{AC}=1-\dfrac{1}{3}=\dfrac{2}{3}\)
=> G là trọng tâm của \(\Delta BCD\)
=> DG là đường trung tuyến của \(\Delta BCD\) ứng với cạnh BC
Hay DG đi qua trung điểm BC
a) Ta có: \(\dfrac{AN}{AB}=\dfrac{3}{6}=\dfrac{1}{2}\)
\(\dfrac{AM}{AC}=\dfrac{4.5}{9}=\dfrac{1}{2}\)
Do đó: \(\dfrac{AN}{AB}=\dfrac{AM}{AC}\)\(\left(=\dfrac{1}{2}\right)\)
Xét ΔANM và ΔABC có
\(\dfrac{AN}{AB}=\dfrac{AM}{AC}\)(cmt)
\(\widehat{BAC}\) chung
Do đó: ΔANM\(\sim\)ΔABC(c-g-c)
Trong Δ ABC, B' ∈ AB, C' ∈ AC.
Ta có
Suy ra: B'C'//BC.