Thực hiện phép tính:
a) x − 3 4 2 ; b) ( 3 t + 1 ) 2 ;
c) 3 a + 1 3 1 3 − 3 a ; d) ( a 2 – 2 ) 2 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(x-2\right)\left(x+3\right)-x\left(x-5\right)=x^2-2x+3x-6-x^2+5x=6x-6\)
\(b,\dfrac{1}{x-2}+\dfrac{-2}{x+2}+\dfrac{2x-8}{x^2-4}=\dfrac{x+2}{\left(x-2\right)\left(x+2\right)}-\dfrac{2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\dfrac{2x-8}{\left(x+2\right)\left(x-2\right)}=\dfrac{x+2}{\left(x-2\right)\left(x+2\right)}-\dfrac{2x-4}{\left(x+2\right)\left(x-2\right)}+\dfrac{2x-8}{\left(x+2\right)\left(x-2\right)}=\dfrac{x+2-2x+4+2x-8}{\left(x+2\right)\left(x-2\right)}=\dfrac{x-2}{\left(x+2\right)\left(x-2\right)}=\dfrac{1}{x+2}\)
a)\(\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4=x^4-y^4\)
b) \(x\left(3x-18\right)-3\left(x-4\right)\left(x-2\right)+8=3x^2-18x-3x^2+18x-24+8=-16\)
Tham khảo
a)
-7x2(3x - 4y)
= -7x2.3x + 7x2ư.4y
= -21x2 + 28x2y
b)
(x - 3)(5x - 4)
= x.5x - x.4 - 3.5x + 3.4
= 5x2 - 4x - 15x + 12
= 5x2 - 19x + 12
c)
(2x - 1)2 = 4x2 - 4x + 1
d)
(x + 3)(x - 3) = x2 - 32 = x2 - 9
a) \(=6x^3+8x^2+2x-6x^3=8x^2+2x\)
b) \(=\left[3xy\left(xy+2xy^2-4\right)\right]:3xy=xy+2xy^2-4\)
c) \(=\dfrac{10x}{\left(x-2\right)\left(x+2\right)}+\dfrac{3}{x+2}-\dfrac{5}{x-2}=\dfrac{10x+3\left(x-2\right)-5\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{8x-16}{\left(x-2\right)\left(x+2\right)}=\dfrac{8\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{8}{x+2}\)
a, \(=6x^3+12x^2+2x-6x^3\\=12x^2+2x\)
b,
\(=xy+2xy^2-4\)
c,
\(\dfrac{10x}{x^2-4}+\dfrac{3}{x+2}-\dfrac{5}{x-2}\)
\(=\dfrac{10x}{\left(x-2\right)\left(x+2\right)}+\dfrac{3x-6}{\left(x-2\right)\left(x+2\right)}-\dfrac{5x+10}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{10x+3x-6-5x-10}{\left(x-2\right)\left(x+2\right)}=\dfrac{8x-16}{\left(x-2\right)\left(x+2\right)}=\dfrac{8\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{8}{x+2}\)
\(a,=-21x^3+28x^2y\\ b,=5x^2-4x-15x+12=5x^2-19x+12\\ c,=4x^2-4x+1\\ d,=49-x^2\)
1.
a) 503 + 120 = 623
b) 1000 - 120 = 880
c) 2 + 18 : 2 = 2 + 9 = 11
d) 21 : 7 - 3 = 3 - 3 = 0
2.
a) x - 3 = 21 => x = 24
b) 15 - x . 3 = 6 => 15 - 3x = 6 => 3x = 15 - 6 = 9 => x = 3
c) x + 21 : 7 = 6 => x + 3 = 6 => x = 3
d) 44 + x : 3 = 50 => x : 3 = 50 - 44 = 6 => x = 18
3.
a) 15 . (21 - 3 . 7) = 15 . (21 - 21) = 15 . 0 = 0
b) (4 : 2 - 2) . 105 = (2 - 2) . 105 = 0 . 105 = 0
c) 376 + 285 + 124 + 715 = 1500
d) 97 + 998 + 9999 + 16 = 11110
e) 252 + 139 - 52 - 39 = 300
4.
a) b - a = 5 - 3 = 2
b) a + b = 3 + 5 = 8
c) 2a + b = 2*3 + 5 = 6 + 5 = 11
d) a . (b + 1) = 3 . (5 + 1) = 3 . 6 = 18
5.
a) 37581 - 9999 = 27582
b) 7345 - 1998 = 5347
c) 485321 - 99999 = 385322
d) 7593 - 1997 = 5596
6.
a) (x - 42) - 110 = 0 => x - 42 = 110 => x = 110 + 42 = 152
b) 2436 : x = 12 => x = 2436 / 12 = 203
c) 74 . (x - 3) = 0 => x - 3 = 0 => x = 3
d) x - 36 : 18 = 2 => x - 2 = 36 => x = 36 + 2 = 38
7.
a) 67 + 135 + 33 = 235
b) 997 + 86 = 1083
c) 37 . 38 + 62 . 37 = 1406
d) 43 . 11 = 473
e) 67 . 99 = 6633
8.
a) 71 - (33 + x) = 26 => 71 - 33 - x = 26 => 38 - x = 26 => x = 38 - 26 = 12
b) 97 - (64 - x) = 44 => 97 - 64 + x = 44 => x = 44 - 97 + 64 => x = 11
c) x - 36 : 18 = 12 => x - 2 = 12 => x = 14
d) 3636 : (12 . x - 91) = 36 => 3636 = 36 * (12 . x - 91) => 3636 = 432 . x - 3276 => 432 . x = 3636 + 3276 => 432 . x = 6912 => x = 6912 / 432 => x = 16
e) ( x : 23 + 45) . 67 = 8911 => (x / 23 + 45) . 67 = 8911 => (x / 23 + 45) = 8911 / 67 => (x / 23 + 45) = 133 => x / 23 = 133 - 45 => x / 23 = 88 => x = 88 . 23 => x = 2024
9.
a) 1 + 2 + 3 + ... + 1998 + 1999 = (1999 . (1999 + 1)) / 2 = 1999 . 2000 / 2 = 1999 . 1000 = 1,999,000
b) Tính tổng tất cả các số tự nhiên có 3 chữ số: Tổng các số từ 100 đến 999 = (100 + 999) / 2 * (999 - 100 + 1) = 1099 / 2 * 900 = 549.5 * 900 = 494550
c) Tính tổng tất cả các số lẻ có 3 chữ số: Các số lẻ từ 101 đến 999 là 101, 103, 105, ..., 999. Số lượng các số này là 450 (900 / 2). Tổng các số này là (101 + 999) / 2 * (450) = 550 * 450 = 247,500
10.
a) 53 . 39 + 47 . 39 - 53 . 21 - 47 . 21 = 2079 + 1833 - 1113 - 987 = 2912
b) 2 . 53 . 12 + 4 . 6 . 87 - 3 . 8 . 40 = 1272 + 1044 - 960 = 1356
c) 47 . 29 - 13 . 29 - 14 . 29 = 1363 - 377 - 406 = 580
d) 1754 : 17 - 74 : 17 + 20 : 17 = 103 - 4 + 1 = 100
e) 26 . 7 - 17 . 9 + 13 . 26 - 17 . 11 = 182 - 153 + 338 - 187 = 180
a) \({x^2}.{x^4} = {x^{2 + 4}} = {x^6}\).
b) \(3{x^2}.{x^3} = 3.1.{x^{2 + 3}} = 3{x^5}\).
c) \(a{x^m}.b{x^n} = a.b.{x^{m + n}}\) (a ≠ 0; b ≠ 0; m, n \(\in\) N).
\(\left(\dfrac{1}{x}+x-2\right):\left(\dfrac{1}{x^2-x}+1-\dfrac{3}{x-1}\right)\)
\(=\dfrac{x^2-2x+1}{x}:\dfrac{1+x^2-x-3x}{x\left(x-1\right)}\)
\(=\dfrac{\left(x-1\right)^2}{x}\cdot\dfrac{x\left(x-1\right)}{x^2-4x+1}=\dfrac{\left(x-1\right)^3}{x^2-4x+1}\)
a: =>x>=0 và x^2+x=x^2
=>x=0
b: =>x>=2 và x^2-4x-3=x^2-4x+4
=>-3=4(loại)
\(a)ĐK:x\ge0\)
\(pt\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x^2+x=x^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x=0\left(tm\right)\end{matrix}\right.\)
Vậy, pt có nghiệm duy nhất là x=0
\(b)ĐK:x\ge2+\sqrt{7}\)
\(pt\Leftrightarrow\left\{{}\begin{matrix}x-2\ge0\\x^2-4x-3=(x-2)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x^2-4x-3=x^2-4x+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\-3=4\end{matrix}\right.\)(vô lý)
Vậy pt vô nghiệm
\(a,=\left(x^3+3x^2-x^2-3x+x+3\right):\left(x+3\right)\\ =\left(x+3\right)\left(x^2-x+1\right):\left(x+3\right)\\ =x^2-x+1\\ b,=\left(x^3+2x^2-x^2-2x+3x+6\right):\left(x+2\right)\\ =\left(x+2\right)\left(x^2-x+3\right):\left(x+2\right)\\ =x^2-x+3\)
a) x 2 - 3 2 x + 9 16 . b) 9 t 2 + 6t + 1.
c) 1 9 − 9 a 2 d) a 4 – 4 a 2 + 4.