K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2017

a, n+7 chia het cho n+2 

=>[(n+2)+5] chia het cho n+2 

vi n+2 chia het cho n+2 =>5 chia het cho n+2

con lai bn tu lm nha ^-^

26 tháng 9 2017

Nghĩ sao làm được thế, đừng giận nhá:

15 được lập từ các tích 3 x 5 và 15 x 1

Nên: Nếu n + 1 = 3 thì n = 3 - 1 = 2

Nếu n + 1 = 5 thì n = 5 - 1 = 4

Nếu n + 1 = 15 thì n = 15 - 1 = 14

Nếu n + 1 = 1 thì n = 1 - 1 = 0

Gọi tập hợp các số đó là A

Ta có: A == { 0 ; 2 ; 4 ; 14 }

26 tháng 9 2017

cảm ơn bạn nhiều

4 tháng 3 2021

vì n thuộc z nên:

3n+24 chia hết cho n-4

n bằng 5

a) Ta có: \(3n+24⋮n-4\)

\(\Leftrightarrow3n-12+36⋮n-4\)

mà \(3n-12⋮n-4\)

nên \(36⋮n-4\)

\(\Leftrightarrow n-4\inƯ\left(36\right)\)

\(\Leftrightarrow n-4\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;9;-9;12;-12;18;-18;36;-36\right\}\)

hay \(n\in\left\{5;3;6;2;7;1;8;0;10;-2;13;-5;16;-8;22;-14;40;-32\right\}\)

Vậy: \(n\in\left\{5;3;6;2;7;1;8;0;10;-2;13;-5;16;-8;22;-14;40;-32\right\}\)

Ta có : \(4n+5⋮5\)

\(\Leftrightarrow4n⋮5\)

\(\Leftrightarrow n⋮5\)

\(\Rightarrow n\inℕ\left(ĐK:n\in B_{\left(5\right)}\right)\)

22 tháng 6 2019

\(b,3n+4⋮n-1\)

Ta có : \(\frac{3n+4}{n-1}=\frac{3n-3+7}{n-1}=\frac{3(n-1)+7}{n-1}=3+\frac{7}{n-1}\)

Do đó : \(7⋮n-1\)=> \(n-1\inƯ(7)\)

=> \(n-1\in\left\{1;7\right\}\)

=> \(n\in\left\{2;8\right\}\)

12 tháng 12 2018

\(3n+2⋮n-1\)

\(\Rightarrow3\left(n-1\right)+5⋮n-1\)

\(\Rightarrow5⋮n-1\)

\(\Rightarrow n-1\in\left\{1,5,-1,-5\right\}\)

\(\Rightarrow n\in\left\{2,6,0,-4\right\}\)

12 tháng 12 2018

\(2n-3⋮n+1\)

\(\Rightarrow2\left(n+1\right)-6⋮n+1\)

\(\Rightarrow6⋮n+1\)

\(\Rightarrow n+1\in\left\{6,1,2,3,-1,-6,-2,-3\right\}\)

\(\Rightarrow n\in\left\{5,0,1,2,-2,-7,-3,-4\right\}\)

27 tháng 6 2016

a) \(3^{n+2}+3^n-2^{n+2}-2^n\)

\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)

\(=3^n.10-2^n.5\)

\(=3^n.10-2^{n-1}.2.5\)chia hết cho 10

b)\(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)

\(=3^{n+1}\left(3^2+1\right)+2^{n+2}\left(2+1\right)\)

\(=3^{n+1}.10+2^{n+2}.3\)

\(=3^n.3.2.5+2^{n+1}.2.3\)chia hết cho 6

27 tháng 6 2016

mình k cho bạn rùi đấy Thảo Lê Thị

17 tháng 6 2016

1./ Do 2n + 1 là số lẻ nên n2 - 2n + 4 chia hết cho 2n+1 thì 4(n2 - 2n + 4) cũng chia hết cho 2n + 1 (nhân số 4 chẵn ko tăng thêm ước cho 2n + 1)

mà: B = 4(n2 - 2n + 4) = 4n2 + 4n + 1 - 12n - 6 + 21 = (2n + 1)2 - 6(2n+1) + 21 = (2n + 1)(2n + 1 - 6) +21 = (2n + 1)(2n - 5) + 21

=> B chia hết cho 2n + 1 <=> 21 chia hết cho 2n + 1.

=> 2n + 1 thuộc U (21) = {-21;-7;-3;-1;1;3;7;21}

Khi đó n = -11; -4 ; -2; -1 ; 0 ; 1; 3 ; 10.

2./ C = 2n2 + 8n + 11 = 2n2 +4n + 4n + 8 + 3 = 2n(n + 2) + 4(n + 2) + 3 = (n + 2)(2n + 4) + 3

để 2n2 + 8n + 11 chia hết cho n + 2 thì n + 2 phải là U(3) = {-3; -1; 1; 3)

Khi đó n = -5 ; -3 ; -1 ; 1

22 tháng 10 2023

 Gọi \(ƯCLN\left(n,n+2\right)=d\)

\(\Rightarrow\left\{{}\begin{matrix}n⋮d\\n+2⋮d\end{matrix}\right.\)

\(\Rightarrow\left(n+2\right)-n⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow d\in\left\{1,2\right\}\)

 Với \(d=2\) thì do d là ước của n nên 2 là ước của n. Thế nhưng n là số lẻ (do n chia 4 dư 3) nên ta thấy vô lí.

 Vậy \(d=1\) hay \(ƯCLN\left(n,n+2\right)=1\). Do đó phân số \(\dfrac{n}{n+2}\) là phân số tối giản khi n chia 4 dư 3.