K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2019

Ta có:

Giải bài 1 trang 68 sgk Đại số 10 | Để học tốt Toán 10

Không tồn tại cặp nghiệm (x ; y) nào thỏa mãn hệ phương trình trên nên hệ phương trình đã cho vô nghiệm.

14 tháng 2 2022

Đặt ẩn bạn nhé, dễ mà

14 tháng 2 2022

Đặt \(\dfrac{1}{x-y+2}=a;\dfrac{1}{x+y-1}=b\)

Ta có HPT

\(\left\{{}\begin{matrix}14a-10b=9\\3a+2b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}14a-10b=9\\15a+10b=20\end{matrix}\right.\Leftrightarrow}}\left\{{}\begin{matrix}29a=29\\3a+2b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=\dfrac{1}{2}\end{matrix}\right.\)

19 tháng 12 2018

be quiet bitch

24 tháng 2 2021

a) Với m = -2

=> hpt trở thành: \(\left\{{}\begin{matrix}x+y=2\\-2x-y=-2\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}y=2-x\\-x=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)

Vậy S = {0; 2}

b) Ta có: \(\left\{{}\begin{matrix}x+y=2\left(1\right)\\mx-y=m\left(2\right)\end{matrix}\right.\) 

=> x + mx = 2 + m 

<=> x(m + 1) = 2 + m

Để hpt có nghiệm duy nhất <=> \(m\ne-1\)

<=> x = \(\dfrac{m+2}{m+1}\) thay vào pt (1)

=> y = \(2-\dfrac{m+2}{m+1}=\dfrac{2m+2-m-2}{m+1}=\dfrac{m}{m+1}\)

Mà 3x - y = -10

=> \(3\cdot\dfrac{m+2}{m+1}-\dfrac{m}{m+1}=-10\)

<=> \(\dfrac{2m+6}{m+1}=-10\) <=> m + 3 = -5(m + 1)

<=> 6m = -8 

<=> m = -4/3

c) Để hpt có nghiệm <=> m \(\ne\)-1

Do x;y \(\in\) Z <=> \(\left\{{}\begin{matrix}\dfrac{m+2}{m+1}\in Z\\\dfrac{m}{m+1}\in Z\end{matrix}\right.\)

Ta có: \(x=\dfrac{m+2}{m+1}=1+\dfrac{1}{m+1}\)

Để x nguyên <=> 1 \(⋮\)m + 1

<=> m +1 \(\in\)Ư(1) = {1; -1}

<=> m \(\in\) {0; -2}

Thay vào y :

với m = 0 => y = \(\dfrac{0}{0+1}=0\)(tm)

m = -2 => y = \(\dfrac{-2}{-2+1}=2\)(tm)

Vậy ....

5 tháng 3 2022

a, \(\left\{{}\begin{matrix}2x+2y=4\\2x-3y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5y=-5\\x=2-y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=3\end{matrix}\right.\)

b, \(\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\x+y=10\end{matrix}\right.\)Theo tc dãy tỉ số bằng nhau 

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{10}{5}=2\Rightarrow x=4;y=6\)

5 tháng 3 2022

a.\(\Leftrightarrow\left\{{}\begin{matrix}3x+3y=6\\2x-3y=9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}5x=15\\2x-3y=9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\2.3-3y=9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)

b.\(\Leftrightarrow\left\{{}\begin{matrix}3x=2y\\x+y-10=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3x-2y=0\\x+y-10=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x-2y=0\\2x+2y=20\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}5x=20\\3x-2y=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=4\\3.4-2y=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=6\end{matrix}\right.\)

 

30 tháng 12 2022

=>-15/x-1+3/y-1=30 và 1/x-1+3/y-1=18

=>-16/x-1=12 và -5/x-1+1/y-1=10

=>x-1=-4/3 và 1/y-1=10+5/x-1=10+5:(-4/3)=-15/4

=>x=-1/3 và y-1=-4/15

=>x=-1/3 và y=11/15

30 tháng 12 2022

\(\left\{{}\begin{matrix}-\dfrac{5}{x-1}+\dfrac{1}{y-1}=10\\\dfrac{1}{x-1}+\dfrac{3}{y-1}=18\end{matrix}\right.\)

Đặt: \(\dfrac{1}{x-1}=a;\dfrac{1}{y-1}=b\), ta được hệ mới:

\(\left\{{}\begin{matrix}-5a+b=10\\a+3b=18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-5a+b=10\\a=18-3b\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-5\left(18-3b\right)+b=10\\a=18-3b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{25}{4}\\a=18-3\cdot\dfrac{25}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{25}{4}\\a=-\dfrac{3}{4}\end{matrix}\right.\)

Trả ẩn: \(\left\{{}\begin{matrix}\dfrac{1}{x-1}=-\dfrac{3}{4}\\\dfrac{1}{y-1}=\dfrac{25}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{3}\\y=\dfrac{29}{25}\end{matrix}\right.\)

Vậy hệ phương trình \(\left(x;y\right)=\left(-\dfrac{1}{3};\dfrac{29}{25}\right)\).

25 tháng 5 2023

b) Xét phương trình 2 có 
(1-x2 )/(1+xy)2 - (x+y)2    - y2 =1
=>(1-x2)/1+2xy+x2y2-x2-2xy-y2   -y2=1
=>(1-x2) /(1-x2 )-y2(1-x2)       -y2 =1
=>(1-x2)/(1-x2)(1-y2)       -y2=1
=>1/(1-y2)    -y2=1
=>1=(1-y2)2
=>1=1-2y2+y4
=>y4-2y2=0
=>y2(y2-2)=0
=>y=0
y2-2=0
=> y=+√2
=> y=-√2
 Thay y vào phương trình 1 là ra x 

 

 

25 tháng 5 2023

à nhầm ... sửa lại dòng 6 
=> 1/(1-y2) - y2=1
=> 1/(1-y2)=1+y2

=> 1=1-y4
=> y=0
=>x=3
=> x=
-3
 

26 tháng 8 2023

\(\left\{{}\begin{matrix}2x+5y=-\left(x+y\right)\left(1\right)\\6x+3y=y-10\left(2\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+5y=-x-y\\6x+2y=-10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x+6y=0\\6x+2y=-10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x+6y=0\\3x+y=-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5y=5\\3x+y=-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-2y\\y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=1\end{matrix}\right.\)