K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2017

Áp dụng định lý Sin trong tam giác ABC ta có:

Giải bài 9 trang 62 sgk Hình học 10 | Để học tốt Toán 10

Vậy bán kính đường tròn ngoại tiếp tam giác bằng 2√3.

29 tháng 4 2017

19 tháng 3 2018

Chọn D.

Áp dụng định lí sin, ta có

30 tháng 3 2017

Giải bài 9 trang 62 sgk Hình học 10 | Để học tốt Toán 10

AH
Akai Haruma
Giáo viên
12 tháng 4 2021

Lời giải:
Ta nhớ lại công thức, trong tam giác $ABC$ có $AB=c, BC=a, CA=b$ thì:

$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R$.

Ứng vào bài toán, với $\sin A=\sin 120=\frac{\sqrt{3}}{2}$ và $a=BC=6$ thì:

$R=\frac{a}{2\sin A}=\frac{6}{2.\frac{\sqrt{3}}{2}}=2\sqrt{3}$

12 tháng 3 2017

Chọn B.

Áp dụng định lí Cosin, ta có

BC2 = AB2 + AC2 - 2AB.AC.cosA

= 32 + 62-2.3.6.cos600 = 27

Ta thấy:  BC2 + AB2 = AC2

Suy ra tam giác ABC vuông tại B

do đó bán kính R = AC : 2 = 3.

\(\cos ABC=\dfrac{BA^2+BC^2-AC^2}{2\cdot BA\cdot BC}\)

\(\Leftrightarrow89a^2-AC^2=2\cdot5a\cdot8a\cdot\dfrac{1}{2}=40a^2\)

=>AC=7a

\(AM=\dfrac{b^2+c^2}{2}-\dfrac{a^2}{4}=\dfrac{25a^2+49a^2}{2}-\dfrac{64a^2}{4}=37a^2-16a^2=21a^2\)

hay \(AM=a\sqrt{21}\left(cm\right)\)