Tính tổng của đa thức
P = x2y + x3 – xy2 + 3 và Q = x3 + xy2 – xy – 6.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
• P + Q = (x2y + x3 – xy2 + 3) + (x3 + xy2 – xy – 6)
= x2y + x3 – xy2 + 3 + x3 + xy2 – xy – 6
= x2y + (x3 + x3) + (xy2 – xy2) – xy + (3 – 6)
= x2y + 2x3 – xy – 3.
• P – Q = (x2y + x3 – xy2 + 3) – (x3 + xy2 – xy – 6)
= x2y + x3 – xy2 + 3 – x3 – xy2 + xy + 6
= x2y + (x3 – x3) – (xy2 + xy2) + xy + (6 + 3)
= x2y – 2xy2 + xy + 9.
Vậy P + Q = x2y + 2x3 – xy – 3; P – Q = x2y – 2xy2 + xy + 9.
\(\text{ P + Q = (x^2y + x^3 – xy^2 + 3) + (x^3 + xy^2 – xy – 6)}\)
\(\text{= x^2y + x^3 – xy^2 + 3 + x^3 + xy^2 – xy – 6}\)
\(\text{= x^2y + (x^3 + x^3) + (xy^2 – xy^2) – xy + (3 – 6)}\)
\(\text{= x^2y + 2x^3 – xy – 3}\)
__________________________________________________
\(\text{P – Q = (x^2y + x^3 – xy^2 + 3) – (x^3 + xy^2 – xy – 6)}\)
\(\text{= x^2y + x^3 – xy^2 + 3 – x^3 – xy^2 + xy + 6}\)
\(\text{= x^2y + (x^3 – x^3) – (xy^2 + xy^2) + xy + (6 + 3)}\)
\(\text{= x^2y – 2xy^2 + xy + 9}\)
a/ \(P+Q=\left(x^2y+x^3-xy^2+3\right)+\left(x^3+xy^2-xy-6\right)\)
\(=x^2y+x^3-xy^2+3+x^3+xy^2-xy-6\)
\(=\left(x^3+x^3\right)+\left(xy^2-xy^2\right)+\left(3-6\right)+x^2y-xy\)
\(=2x^3+x^2y-xy-3\)
b/ \(M+N=\left(x^2y+0,5xy^3-7,5x^3y^2+x^3\right)+\)
\(\left(3xy^3-x^2y+5,5x^3y^2\right)\)
\(=x^2y+0,5xy^3-7,5x^3y^2+x^3+3xy^3-x^2y+5,5x^3y^2\)
\(=\left(x^2y-x^2y\right)+\left(0,5xy^3+3xy^3\right)+\left(5,5x^3y^2-7,5x^3y^2\right)+x^3\)
\(=3,5xy^3-2x^3y^2+x^3\)
Ta có: P = x2y + xy2 – 5x2y2 + x3 và Q = 3xy2 – x2y + x2y2
⇒ P + Q = (x2y + xy2 – 5x2y2 + x3) + (3xy2 – x2y + x2y2)
= x2y + xy2 – 5x2y2 + x3 + 3xy2 – x2y + x2y2
= x3 +(– 5x2y2 + x2y2)+ (x2y – x2y) + (xy2+ 3xy2)
= x3 – 4x2y2 + 0 + 4xy2
= x3 – 4x2y2 + 4xy2
Ta có P + Q=x2 y + xy2 - 5x2 y2 + x3 + 3xy2 - x2 y + x2 y2
= -4x2 y2 + x3 + 4xy2
Chọn B
\(A=5x^2y-xy^2+4xy+6\) bậc : 3
a)\(B=-5x^2y+xy^2-4xy-6\)
b)\(=>C=-2xy+1-5x^2y+xy^2-4xy-6\)
\(C=-5x^2y+xy^2-6xy-5\)
Sửa đề: \(A=x^3+x^2y-xy^2-y^3+x^2-y^2+2x+2y+3\)
\(A=x^2\left(x+y\right)-y^2\left(x+y\right)+\left(x-y\right)\left(x+y\right)+2x+2y+3\)
\(=-x^2+y^2+\left(-x+y\right)-2+3\)
\(=-\left(x-y\right)\left(x+y\right)-\left(x-y\right)+1\)
\(=\left(x-y\right)\left(-x-y-1\right)+1\)
\(=\left(x-y\right)\left(1-1\right)+1=1\)
P + Q = (x2y + x3 – xy2 + 3) + (x3 + xy2 – xy – 6)
= x2y + x3 – xy2 + 3 + x3 + xy2 – xy – 6
= (x3 + x3) + x2y + (xy2 – xy2) – xy + (3 – 6)
= 2x3 + x2y – xy – 3
Vậy P + Q = 2x3 + x2y – xy – 3.