So sánh các góc của tam giác ABC, biết rằng:
AB = 2cm, BC = 4cm, AC = 5cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong tam giác ABC có:
AB = 2cm ; BC = 4cm ; AC = 5cm
=> AB < BC < CA nên
Theo định lý `1` của tam giác `->`\(\widehat{B}>\widehat{A}>\widehat{C}\)
Wrecking Ball
\(AB< BC< AC\)
vì \(2< 4< 5\) ( theo quan hệ giữa cạnh và góc trong một tam giác )
\(\Rightarrow\widehat{C}< \widehat{A}< \widehat{B}\)
Ta có: AB = BC nên ΔABC cân tại B
Suy ra: ∠A = ∠C
Vì BC > AC nên ∠A > ∠B (đối diện cạnh lớn hơn là góc lớn hơn)
Vậy ∠A = ∠C > ∠B .
Ta có : AB = 5cm ; BC = 5cm ; AC = 3cm
\(\Rightarrow\)AB = BC = 5cm
AB > AC ( 5cm > 3cm )
AC < BC ( 3cm < 5cm )
Chúc bn hok tốt
Ta có: AB = BC nên ΔABC cân tại B
Suy ra: \(\widehat{A}=\widehat{C}\)
Vì BC > AC nên \(\widehat{A}>\widehat{B}\) (đối diện cạnh lớn hơn là góc lớn hơn)
Vậy \(\widehat{A}=\widehat{C}>\widehat{B}\)
Dựa vào hình vẽ, ta có:
Góc đối diện cạnh BC là Â
Góc đối diện cạnh AC là B̂
Góc đối diện cạnh AB là Ĉ
Mà: Trong một tam giác, góc đối diện với cạnh lớn hơn là góc lớn hơn
Tam giác ABC có AB = 2cm, BC = 4cm, AC = 5cm ⇒ AB < BC < CA ⇒ Ĉ < Â < B̂.