K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2018

-2x + 3 > 0 ⇔ -2x > -3 ⇔ x < 3/2

Biểu diễn tập nghiệm trên trục số:

Giải bài tập Toán 10 | Giải Toán lớp 10

Nhị thức f(x) = -2x + 3 có giá trị:

Trái dấu với hệ số của x khi x < 3/2

Cùng dấu với hệ số của x khi x > 3/2

1:

a: 2x-3=5

=>2x=8

=>x=4

b: (x+2)(3x-15)=0

=>(x-5)(x+2)=0

=>x=5 hoặc x=-2

2:

b: 3x-4<5x-6

=>-2x<-2

=>x>1

8 tháng 5 2023

`a)[2x+2]/3 < 2+[x-2]/2`

`<=>2(2x+2) < 12+3(x-2)`

`<=>4x+4 < 12+3x-6`

`<=>x < 2`

Trục số:  -----------------|---------------|---------------->

                                          0                         2

`b)3x-4 < 5x-6`

`<=>3x-5x < -6+4`

`<=>-2x < -2`

`<=>x > 1`

30 tháng 11 2023

loading...  loading...  

31 tháng 8 2021

b, ĐK: \(x\ne8\)

\(A=\dfrac{x-5}{x-8}>0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-5>0\\x-8>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-5< 0\\x-8< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>5\\x>8\end{matrix}\right.\\\left\{{}\begin{matrix}x< 5\\x< 8\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x>8\\x< 5\end{matrix}\right.\)

31 tháng 8 2021

a/ -4 + 2x < 0 

2x < 4

x < 2 

2

b) Để A dương 

\(\left[{}\begin{matrix}x< 5\\x>8\end{matrix}\right.\)

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) Dựa vào đồ thị ta thấy hàm số đã cho vô nghiệm

          Biệt thức \(\Delta  = {2^2} - 4.\left( { - 1} \right).\left( { - 2} \right) =  - 4 < 0\)

          Ta thấy hệ số của \({x^2}\) là \( - 1 < 0\)

          Đồ thị nằm dưới trục hoành với mọi x

Nên \(f\left( x \right)\) cùng dấu với hệ số của \({x^2}\) với \(\forall x \in \mathbb{R}\)

b) Dựa vào đồ thị ta thấy hàm số đã cho có nghiệm kép \({x_1} = {x_2} = 1\)

Biệt thức \(\Delta  = {2^2} - 4.\left( { - 1} \right).\left( { - 1} \right) = 0\)

          Ta thấy hệ số của \({x^2}\) là \( - 1 < 0\)

          Đồ thị nằm dưới trục hoành với mọi x

Nên \(f\left( x \right)\) cùng dấu với hệ số của \({x^2}\) với \(\forall x \in \mathbb{R}\)

c) Dựa vào đồ thị ta thấy hàm số đã cho có hai nghiệm phân biệt  \({x_1} =  - 1;{x_2} = 3\)

Biệt thức \(\Delta  = {2^2} - 4.\left( { - 1} \right).3 = 16 > 0\)

          Ta thấy hệ số của \({x^2}\) là \( - 1 < 0\)

Đồ thị nằm dưới trục hoành khi  \(x \in \left( { - \infty , - 1} \right) \cup \left( {3, + \infty } \right)\)

Đồ thị nằm trên trục hoành với mọi \(x \in \left( { - 1,3} \right)\)

Nên \(f\left( x \right)\) cùng dấu với hệ số của \({x^2}\) khi \(x \in \left( { - \infty , - 1} \right) \cup \left( {3, + \infty } \right)\)

d) Dựa vào đồ thị ta thấy hàm số bậc hai đã cho vô nghiệm

Biệt thức \(\Delta  = {6^2} - 4.1.10 =  - 4 < 0\)

          Ta thấy hệ số của \({x^2}\) là \(1 > 0\)

Đồ thị nằm trên trục hoành với mọi \(x\)

Nên \(f\left( x \right)\) cùng dấu với hệ số của \({x^2}\) với mọi \(x \in \mathbb{R}\)

e) Dựa vào đồ thị ta thấy hàm số đã cho có nghiệm kép \({x_1} = {x_2} =  - 3\)

Biệt thức \(\Delta  = {6^2} - 4.1.9 = 0\)

          Ta thấy hệ số của \({x^2}\) là \(1 > 0\)

          Đồ thị nằm trên trục hoành với mọi x

Nên \(f\left( x \right)\) cùng dấu với hệ số của \({x^2}\) với mọi \(x \in \mathbb{R}\)

g) ) Dựa vào đồ thị ta thấy hàm số đã cho có hai nghiệm phân biệt  \({x_1} =  - 4;{x_2} =  - 2\)

Biệt thức \(\Delta  = {6^2} - 4.1.8 = 4 > 0\)

          Ta thấy hệ số của \({x^2}\) là \(1 > 0\)

Đồ thị nằm trên trục hoành khi  \(x \in \left( { - \infty , - 4} \right) \cup \left( { - 2, + \infty } \right)\)

Đồ thị nằm dưới trục hoành với mọi \(x \in \left( { - 4, - 2} \right)\)

Nên \(f\left( x \right)\) cùng dấu với hệ số của \({x^2}\) khi \(x \in \left( { - \infty , - 4} \right) \cup \left( { - 2, + \infty } \right)\)

29 tháng 8 2019

a) Ta có: 2. (-2) ≤ 3 nên -2 có là nghiệm của bất phương trình

+) Giải bài tập Toán 10 | Giải Toán lớp 10 không là nghiệm của bất phương trình ,

+) 2π > 3 nên π không là nghiệm của bất phương trình.

+) Giải bài tập Toán 10 | Giải Toán lớp 10 nên √10 không là nghiệm của bất phương trình,

Các số là nghiệm của bất phương trình trên là: -2;

Các số không là nghiệm của bất phương trình trên là: Giải bài tập Toán 10 | Giải Toán lớp 10; π; √10

b)2x ≤ 3 ⇔ x ≤ 3/2

Biểu diễn tập nghiệm trên trục số là:

Giải bài tập Toán 10 | Giải Toán lớp 10

7 tháng 5 2015

a,A=2x-5 không âm hay 2x-5>0

=> 2x>5

=> x>5/2

Vậy gt của x là 5/2

b, x-8 >= 2.(x+1/2)+7

=> x-8>=2x+1+7

=> x-8>=2x+8

=> -x>=16

=> x=<-16

vậy bpt có tập nghiệm {xlx=<-16}

biểu diễn tập nghiệm trên trục số: (mk vẽ k đk ẹp) 0 -16

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Bước 1: Vẽ đường thẳng \(d_1: y-2x=2\) đi qua (0;2) và (-1;0). 

Lấy điểm O(0;0) không thuộc \(d_1\). Vì 0-2.0=0<2 nên O thuộc miền nghiệm

Miền nghiệm của BPT \(y - 2x \le 2\) là nửa mp bờ \(d_1\), chứa điểm O.

Bước 2: Vẽ đường thẳng \(d_2: y=4\) đi qua (0;4) và (1;4). 

Lấy điểm O(0;0) không thuộc \(d_2\). Vì 0<4 nên O thuộc miền nghiệm.

Miền nghiệm của BPT \(y \le 4\) là nửa mp bờ \(d_2\), chứa điểm O.

Bước 3: Vẽ đường thẳng \(d_3: x=5\) đi qua (5;0) và (5;1). 

Lấy điểm O(0;0) không thuộc \(d_3\). Vì 0<5 nên O thuộc miền nghiệm

Miền nghiệm của BPT \(x \le 5\) là nửa mp bờ \(d_3\), chứa điểm O.

Bước 4: Vẽ đường thẳng \(d_4: x + y = - 1\) đi qua (-1;0) và (0;-1). 

Lấy điểm O(0;0) không thuộc \(d_4\). Vì 0+0=0>-1 nên O thuộc miền nghiệm.

Miền nghiệm của BPT \(x + y \ge  - 1\) là nửa mp bờ \(d_4\), chứa điểm O.

 

Miền biểu diễn nghiệm của hệ bất phương trình là miền tứ giác ABCD với

A(1;4); B(5;4), C(5;-6); D(-1;0).

Giá trị F tại các điểm A, B, C, D lần lượt là:

\(F\left( {1;4} \right) =  - 1 - 4 =  - 5\)

\(F\left( {5;4} \right) =  - 5 - 4 =  - 9\)

\(F\left( {5;-6} \right) =  - 5 - (-6) =  1\)

\(F\left( { - 1;0} \right) =  - \left( { - 1} \right) - 0 = 1\)

Vậy giá trị lớn nhất của biểu thức F(x;y) là 1 và giá trị nhỏ nhất của biểu thức F(x;y) là -9.