K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2021

\(a^2+b^2+c^2=ab+ac+bc\)

\(\Rightarrow a^2+b^2+c^2-ab-ac-bc=0\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2ab+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Mà: \(\hept{\begin{cases}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(c-a\right)^2\ge0\end{cases}}\forall a;b;c\)

\(\Rightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\Leftrightarrow a-b=b-c=c-a=0\)

\(\Rightarrow a=b=c\)

Vậy ta có điều cần phải chứng minh

14 tháng 6 2018

Ta có đăng thức <=> \(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

<=> a=b=c(ĐPCM)
^_^

14 tháng 6 2018

 Ta có: a2+b2+c2=ab+bc+ca

=>2(a2+b2+c2)=2(ab+bc+ca)

<=>2a2+2b2+2c2=2ab+2bc+2ca

<=>2a2+2b2+2c2-2ab-2bc-2ca=0

<=>a2+a2+b2+b2+c2+c2-2ab-2bc=2ca=0

<=>(aa-2ab+b2)+(b2-2bc+b2)+(a2-2ca+c2)=0

<=>(a-b)2+(b-c)2+(a-c)2=0

=>hoặc (a-b)2=0 hoặc (b-c)2=0 hoặc (a-c)2=0<=>a-b=0 hoặc b-c=0 hoặc a-c=0<=>a=b hoặc b=c hoặc a=c

=> a=b=c (đpcm)

29 tháng 6 2017

Từ \(a^2+b^2+c^2=ab+bc+ac\Rightarrow a^2+b^2+c^2-ab-bc-ac=0\)

\(\Rightarrow2\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\)

\(=\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\\left(a-c\right)^2=0\\\left(b-c\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}a-b=0\\a-c=0\\b-c=0\end{cases}\Rightarrow a=b=c}\)

Vậy nếu \(a^2+b^2+c^2=ab+bc+ac\)thì \(a=b=c\)

14 tháng 7 2015

nhân cả hai vế a2+b2+c2=ab+ac+bc cho 2 ta được:

2.(a2+b2+c2)=2.(ab+ac+bc)

<=>2a2+2b2+2c2=2ab+2ac+2bc

<=>2a2+2b2+2c2-2ab-2ac-2bc=0

<=>a2-2ab+b2+a2-2ac+c2+b2-2bc+c2=0

<=>(a-b)2+(a-c)2+(b-c)2=0

<=>a-b=0và a-c=0 và b-c=0

<=>a=b và a=c và b=c

=>a=b=c

9 tháng 6 2017

(a + b + c)^2=3(ab+ac+bc) 
<=>a^2 +b^2+c^2+2ab+2ac+2bc -3ab-3ac-3bc=0 
<=>a^2+b^2+c^2-ab-ac-bc=0 
<=> 2a^2+2b^2+2c^2-2ab-2ac-2bc=0 
<=> (a^2 - 2ab + b^2) + (b^2 - 2bc + c^2) + (c^2 - 2ca + a^2) = 0 
<=> (a - b)^2 + (b - c)^2 + (c - a)^2 = 0 
<=> a = b = c

9 tháng 6 2017

Vô đây tham khảo nhé 

Câu hỏi của Phan Thị Hồng Nhung - Toán lớp 8 - Học toán với OnlineMath

Chúc bạn học giỏi

Good Luck

29 tháng 6 2015

Ta có

a^2 + b^2 +c^2 = ab + ac + bc

=> a^2 +b^2 +c^2 - ab - bc -ac = 0

=> 2(a^2 + b^2 +c^2 -ab-bc-ac) = 2.0 = 0

=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ac = 0

=> a^2 - 2ab + b^2 + b^2 - 2bc + c^2 + c^2 -2ac + c^2  = 0

=> ( a-b)^2 + ( a-c)^2 + ( b-c)^2 = 0

Vì ba cái đều lớn hơn = 0 => = 0 khi cả ba caí = 0

a -b = 0   => a=b

a  - c =  0  a = c

 b - c = 0   b = c

=> a = b= c => ĐPCM hơi tắt tí

29 tháng 6 2015

 Ta có: a2+b2+c2=ab+bc+ca

=>2(a2+b2+c2)=2(ab+bc+ca)

<=>2a2+2b2+2c2=2ab+2bc+2ca

<=>2a2+2b2+2c2-2ab-2bc-2ca=0

<=>a2+a2+b2+b2+c2+c2-2ab-2bc=2ca=0

<=>(aa-2ab+b2)+(b2-2bc+b2)+(a2-2ca+c2)=0

<=>(a-b)2+(b-c)2+(a-c)2=0

=>hoặc (a-b)2=0 hoặc (b-c)2=0 hoặc (a-c)2=0<=>a-b=0 hoặc b-c=0 hoặc a-c=0<=>a=b hoặc b=c hoặc a=c

=> a=b=c (đpcm)

1 tháng 7 2017

\(a^2+b^2+c^2=ab+ac+bc\)

\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2ac+2bc\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)00

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Rightarrow a=b=c\)

1 tháng 7 2017

Ta có : a2 + b2 + c2 = ab + ac + bc 

=> a2 + b2 + c2 - ab - ac - bc = 0

=>  2a2 + 2b2 + 2c2 -2ab - 2ac - 2bc = 0

=> (a2 - 2ab + b2) + (a2 - 2ac + c2) + (b2 - 2bc + c2) = 0

=> (a - b)2 + (a - c2 + (b - c)2 = 0

=> a = b = c (đpcm)

8 tháng 2 2021

Ta có : \(\frac{a^2-bc}{a}+\frac{b^2-ac}{b}+\frac{c^2-ab}{c}=0\)

=> \(a-\frac{bc}{a}+b-\frac{ac}{b}+c-\frac{ab}{c}=0\)

=> \(a+b+c=\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\)

=> \(a+b+c=abc\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)

=> \(\frac{a+b+c}{abc}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)

=> \(\frac{1}{bc}+\frac{1}{ac}+\frac{1}{ab}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)

=> \(\frac{2}{bc}+\frac{2}{ac}+\frac{2}{ab}=\frac{2}{a^2}+\frac{2}{b^2}+\frac{2}{c^2}\)

=> \(\frac{2}{a^2}+\frac{2}{b^2}+\frac{2}{c^2}-\frac{2}{bc}-\frac{2}{ac}-\frac{2}{ac}=0\)

=> \(\left(\frac{1}{a^2}-\frac{2}{ab}+\frac{1}{b^2}\right)+\left(\frac{1}{a^2}-\frac{2}{ac}+\frac{1}{c^2}\right)+\left(\frac{1}{b^2}-\frac{1}{bc}+\frac{1}{c^2}\right)=0\)

=> \(\left(\frac{1}{a}-\frac{1}{b}\right)^2+\left(\frac{1}{a}-\frac{1}{c}\right)^2+\left(\frac{1}{b}-\frac{1}{c}\right)^2=0\)

=> \(\hept{\begin{cases}\frac{1}{a}-\frac{1}{b}=0\\\frac{1}{a}-\frac{1}{c}=0\\\frac{1}{b}-\frac{1}{c}=0\end{cases}}\Rightarrow\hept{\begin{cases}\frac{1}{a}=\frac{1}{b}\\\frac{1}{a}=\frac{1}{c}\\\frac{1}{b}=\frac{1}{c}\end{cases}}\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\left(\text{đpcm}\right)\)