K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2017

Cho hàm số y = f(x) xác định trên khoảng K, hàm số f(x) được gọi là

 

 

Hàm số chỉ đồng biến hoặc nghịch biến trên K gọi là đơn điệu trên K

2 tháng 4 2017

Cho hàm số y=f(x)y=f(x)xác định trên D

- Hàm số y=f(x)y=f(x)được gọi là đồng biến trên D nếu ∀x1,x2∈D,x1<x2 ⇒f(x1)<f(x2)∀x1,x2∈D,x1<x2 ⇒f(x1)<f(x2)

- Hàm số y=f(x)y=f(x)được gọi là nghịch biến trên D nếu ∀x1,x2∈D,x1<x2 ⇒f(x1)>f(x2)

8 tháng 8 2018

Đáp án là D.

          Sai ở bước III (bảng biến thiên)

31 tháng 7 2018

y = –( m 2  + 5m) x 3  + 6m x 2 + 6x – 5

y′ = –3( m 2  + 5m) x 2  + 12mx + 6

Hàm số đơn điệu trên R khi và chỉ khi y’ không đổi dấu.

Ta xét các trường hợp:

    +)  m 2 + 5m = 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

– Với m = 0 thì y’ = 6 nên hàm số luôn đồng biến.

– Với m = -5 thì y’ = -60x + 6 đổi dấu khi x đi qua .

    +) Với  m 2  + 5m ≠ 0. Khi đó, y’ không đổi dấu nếu

∆ ' = 36 m 2  + 18( m 2  + 5m) ≤ 0 ⇔ 3 m 2  + 5m  ≤  0 ⇔ –5/3  ≤  m  ≤  0

– Với điều kiện đó, ta có –3( m 2  + 5m) > 0 nên y’ > 0 và do đó hàm số đồng biến trên R.

Vậy với điều kiện –5/3  ≤  m  ≤  0 thì hàm số đồng biến trên R.

8 tháng 10 2018

Đáp án: A.

8 tháng 9 2021

Trên \(\left(-\dfrac{\pi}{2}+k.2\pi;\dfrac{\pi}{2}+k.2\pi\right)\) chọn 2 giá trị của x (x1 và x2) sao cho x1 > x2

Xét f(x1) - f(x2) = sinx1 - sinx2

 = 2cos\(\dfrac{x_1+x_2}{2}\) . sin \(\dfrac{x_1-x_2}{2}\)

Do \(\dfrac{x_1+x_2}{2}\in\left(0;\dfrac{\pi}{2}\right)\)

⇒ cos\(\dfrac{x_1+x_2}{2}\) > 0 

Mà \(sin\dfrac{x_1-x_2}{2}\) > 0 

nên f(x1) - f(x2) > 0 

Vậy đồng biến

Nghịch biến tương tự

8 tháng 9 2021

tại sao \(\dfrac{x_1+x_2}{2}\in\left(0;\dfrac{\pi}{2}\right)\)ạ ?

 

28 tháng 6 2018

Đáp án: A.

10 tháng 11 2017

31 tháng 12 2017

- Điều kiện đồng biến, nghịch biến của hàm số:

Cho hàm số y = f(x) có đạo hàm trên khoảng K.

+ f(x) đồng biến (tăng) trên K nếu f’(x) > 0 với ∀ x ∈ K.

+ f(x) nghịch biến (giảm) trên K nếu f’(x) < 0 với ∀ x ∈ K.

- Xét hàm số

 

 

+ Hàm số đồng biến

Giải bài 1 trang 45 sgk Giải tích 12 | Để học tốt Toán 12

+ Hàm số nghịch biến

Giải bài 1 trang 45 sgk Giải tích 12 | Để học tốt Toán 12

Vậy hàm số đồng biến trên Giải bài 1 trang 45 sgk Giải tích 12 | Để học tốt Toán 12

nghịch biến trên các khoảng Giải bài 1 trang 45 sgk Giải tích 12 | Để học tốt Toán 12 và (1; +∞)

- Xét hàm số Giải bài 1 trang 45 sgk Giải tích 12 | Để học tốt Toán 12

Ta có: D = R \ {1}

Giải bài 1 trang 45 sgk Giải tích 12 | Để học tốt Toán 12 ∀ x ∈ D.

⇒ Hàm số nghịch biến trên từng khoảng (-∞; 1) và (1; +∞).