Đố: Vẽ tam giác PQR có PQ = PR = 5cm, QR = 6 cm.
Lấy điểm M trên đường thẳng QR sao cho PM = 4,5cm. Có mấy điểm M như vậy?
Điểm M có nằm trên cạnh QR hay không? Tại sao?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ đường cao AH của ∆PQR
=> H là trung điểm của QR
=> HR = 1/2QR = 3cm
+ ∆PHR vuông tại H
nên PH2 = PR2 – HR2 (định lý pytago)
PH2 = 25- 9 = 16=> PH = 4cm
Đường vuông góc PH = 4cm là đường ngắn nhất trong các đường kẻ P đến đường thẳng QR. Vậy chắc chắn có một đường xiên PM = 4,5cm (vì PM = 4,5cm > 4cm) kẻ từ P đến đường thẳng QR.
∆PHM vuông góc tại H nên HM2 = PM2 – PH2 (định lý pytago)
=> HM2 = 20,25 – 16 = 4, 25
=> HM = 2,1cm
Vậy trên đường thẳng QR có hai điểm M như vậy thỏa mãn điều kiện HM = 2,1cm
Vì HM < HR => M nằm giữa H và R hay hai điểm này nằm trên cạnh QR, và nằm khác phía đối với điểm H
Kẻ đường cao AH của ∆PQR
=> H là trung điểm của QR
=> HR =\(\dfrac{1}{2}\)( cm )
QR = 3( cm )
+ ∆PHR vuông tại H
nên PH2 = PR2 – HR2 (định lý pytago)
PH2 = 25- 9 = 16=> PH = 4cm
Đường vuông góc PH = 4cm là đường ngắn nhất trong các đường kẻ P đến đường thẳng QR. Vậy chắc chắn có một đường xiên PM = 4,5cm (vì PM = 4,5cm > 4cm) kẻ từ P đến đường thẳng QR.
∆PHM vuông góc tại H nên HM2 = PM2 – PH2 (định lý pytago)
=> HM2 = 20,25 – 16 = 4, 25
=> HM = 2,1cm
Vậy trên đường thẳng QR có hai điểm M như vậy thỏa mãn điều kiện HM = 2,1cm
Vì HM < HR => M nằm giữa H và R hay hai điểm này nằm trên cạnh QR, và nằm khác phía đối với điểm H
Kẻ đường cao AH của ∆PQR
=> H là trung điểm của QR
=> HR = QR = 3cm
+ ∆PHR vuông tại H
nên PH2 = PR2 – HR2 (định lý pytago)
PH2 = 25- 9 = 16=> PH = 4cm
Đường vuông góc PH = 4cm là đường ngắn nhất trong các đường kẻ P đến đường thẳng QR. Vậy chắc chắn có một đường xiên PM = 4,5cm (vì PM = 4,5cm > 4cm) kẻ từ P đến đường thẳng QR.
∆PHM vuông góc tại H nên HM2 = PM2 – PH2 (định lý pytago)
=> HM2 = 20,25 – 16 = 4, 25
=> HM = 2,1cm
Vậy trên đường thẳng QR có hai điểm M như vậy thỏa mãn điều kiện HM = 2,1cm
Vì HM < HR => M nằm giữa H và R hay hai điểm này nằm trên cạnh QR, và nằm khác phía đối với điểm H
Kẻ đường cao AH của ∆PQR
=> H là trung điểm của QR
=> HR = QR = 3cm
∆PHR vuông tại H
Ta có: PH2 = PR2 – HR2 ( dlptg )
Hay PH2 = 25 - 9 = 16
=> PH = căn 16 = 4cm
Vậy đường vuông góc PH = 4cm là đường ngắn nhất trong các đường kẻ P đến đường thẳng QR.
Vậy chắc chắn có một đường xiên PM = 4,5cm (vì PM = 4,5cm > 4cm) kẻ từ P đến đường thẳng QR.
∆PHM vuông góc tại H nên
HM2 = PM2 – PH 2 (định lý pytago)
=> HM2 = 20,25 – 16 = 4,25
=> HM = căn 4,25 = 2,1cm
Vậy trên đường thẳng QR có hai điểm M như vậy thỏa mãn điều kiện HM = 2,1cm
Do HM < HR
=> M nằm giữa H và R hay hai điểm này nằm trên cạnh QR và nằm khác phía đối với điểm H
Ta có Tam giác PQR cân tại P vì PQ=PR
Kẻ đường cao PH của Tam giác PQR ta có
Vì Tam giác PQR cân tại P => H là trung điểm RQ => HR=HQ=1/2.RQ=1/2.6=3(cm)
Tam giác PRH vuông tại H, Áp dụng ĐL Pytago có
\(PR^2=RH^2+PH^2\)
\(5^2=3^2+PH^2\)=> PH=4cm
Xét Tam giác PMH vuông tại H, áp dụng PYtago ta có
\(PM^2=PH^2+MH^2\)
\(4.5^2=4^2+MH^2\)
=> MH=\(\sqrt{4.5^2-4^2}\)
Nếu M thuộc đoạn RH (TM)
Nếu M thuộc đoạn QH (TM)
Vậy có 2 đuiểm M thảo mãn yêu cầu
(P/s) có thể Ah trình bày ko đúng lém đâu hen
_Kudo_
Kẻ đường cao AH của ∆PQR
=> H là trung điểm của QR
=> HR = 1/2 QR = 3cm
∆PHR vuông tại H
nên PH2 = PR2 – HR2 (định lý pytago)
PH2 = 25- 9 = 16=> PH = 4cm
Đường vuông góc PH = 4cm là đường ngắn nhất trong các đường kẻ P đến đường thẳng QR. Vậy chắc chắn có một đường xiên PM = 4,5cm (vì PM = 4,5cm > 4cm) kẻ từ P đến đường thẳng QR.
∆PHM vuông góc tại H nên HM2 = PM2 – PH2 (định lý pytago)
=> HM2 = 20,25 – 16 = 4, 25
=> HM = 2,1cm
Vậy trên đường thẳng QR có hai điểm M như vậy thỏa mãn điều kiện HM = 2,1cm
Vì HM < HR => M nằm giữa H và R hay hai điểm này nằm trên cạnh QR, và nằm khác phía đối với điểm H
Kẻ đường cao AH của ∆PQR
=> H là trung điểm của QR
=> HR =\(\dfrac{1}{2}\) QR = 3cm
+ ∆PHR vuông tại H
nên PH2 = PR2 – HR2 (định lý pytago)
PH2 = 25- 9 = 16=> PH = 4cm
Đường vuông góc PH = 4cm là đường ngắn nhất trong các đường kẻ P đến đường thẳng QR. Vậy chắc chắn có một đường xiên PM = 4,5cm (vì PM = 4,5cm > 4cm) kẻ từ P đến đường thẳng QR.
∆PHM vuông góc tại H nên HM2 = PM2 – PH2 (định lý pytago)
=> HM2 = 20,25 – 16 = 4, 25
=> HM = 2,1cm
Vậy trên đường thẳng QR có hai điểm M như vậy thỏa mãn điều kiện HM = 2,1cm
Vì HM < HR => M nằm giữa H và R hay hai điểm này nằm trên cạnh QR, và nằm khác phía đối với điểm H
Xét hai tam giác vuông tại H: ΔPHQ và ΔPHR có
PH chung
PQ = PR ( = 5cm)
⇒ ΔPHQ = ΔPHR (cạnh huyền – cạnh góc vuông)
⇒ HQ = HR (Hai cạnh tương ứng)
Mà HQ + HR = QR = 6 cm
+ ΔPHR vuông tại H có PR2= PH2+ HR2(định lí Py – ta – go)
⇒ PH2= PR2– HR2= 52– 32= 16 ⇒ PH = 4cm .
Đường vuông góc PH = 4cm là đường ngắn nhất trong các đường kẻ P đến đường thẳng QR.
Vậy chắc chắn có đường xiên PM = 4,5cm (vì PM = 4,5cm > 4cm) kẻ từ P đến đường thẳng QR.
+ Lại có : HM, HR lần lượt là hình chiếu của các đường xiên PM, PR trên đường thẳng QR.
Mà PM < PR ⇒ HM < HR = HQ (đường xiên nào lớn hơn thì hình chiếu lớn hơn).
⇒ M nằm giữa H và Q hoặc H và R
⇒ M nằm trên cạnh QP và có hai điểm M như vậy.
* Vẽ hình:
- Vẽ tam giác PQR có PQ = PR = 5cm, QR = 6cm.
+ Vẽ đoạn thẳng QR = 6cm.
+ Vẽ cung tròn tâm Q và cung tròn tâm R bán kính 5cm. Hai cung tròn này cắt nhau tại P.
+ Nối PQ và PR ta được tam giác cần vẽ.
- Vẽ điểm M : Vẽ cung tròn tâm P bán kính 4,5cm cắt QR (nếu có) tại M.
Vậy ta có thể vẽ được 2 điểm M trên đường thẳng QR để PM = 4.5cm
* Kẻ đường cao PH của ΔPQR
Xét hai tam giác vuông tại H: ΔPHQ và ΔPHR có
PH chung
PQ = PR ( = 5cm)
⇒ ΔPHQ = ΔPHR (cạnh huyền – cạnh góc vuông)
⇒ HQ = HR (Hai cạnh tương ứng)
Mà HQ + HR = QR = 6 cm
+ ΔPHR vuông tại H có PR2= PH2+ HR2(định lí Py – ta – go)
⇒ PH2= PR2– HR2= 52– 32= 16 ⇒ PH = 4cm .
Đường vuông góc PH = 4cm là đường ngắn nhất trong các đường kẻ P đến đường thẳng QR.
Vậy chắc chắn có đường xiên PM = 4,5cm (vì PM = 4,5cm > 4cm) kẻ từ P đến đường thẳng QR.
+ Lại có : HM, HR lần lượt là hình chiếu của các đường xiên PM, PR trên đường thẳng QR.
Mà PM < PR ⇒ HM < HR = HQ (đường xiên nào lớn hơn thì hình chiếu lớn hơn).
⇒ M nằm giữa H và Q hoặc H và R
⇒ M nằm trên cạnh QP và có hai điểm M như vậy.