K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2019

 

Để học tốt Toán 7 | Giải toán lớp 7

17 tháng 11 2018

 

Để học tốt Toán 7 | Giải toán lớp 7

13 tháng 12 2016

Mk nhầm nha -1 chứ ko fải -4

Mog ai bt thì giúp mk vs

12 tháng 3 2019

a)

Giải bài tập Toán 9 | Giải Toán lớp 9

b)Bảng giá trị

x 0 1
y = 2x 0 2

Đồ thị hàm số y = 2x đi qua 2 điểm (0; 0) và (1; 2)

Giải bài tập Toán 9 | Giải Toán lớp 9

4 tháng 1 2022

cho mik hỏi đề cho x= bao nhiêu ạ

Xét hàm số \(y = S(x) =  - 2{x^2} + 20x(0 < x < 10)\)a) Trên mặt phẳng tọa độ Oxy, biểu diễn tọa độ các điểm trong bảng giá trị của hàm số lập được ở Ví dụ 1. Nối các điểm đã vẽ lại ta được dạng đồ thị hàm số \(y =  - 2{x^2} + 20x\)trên khoảng (0; 10) như trong Hình 6.10. Dạng đồ thị \(y =  - 2{x^2} + 20x\) có giống với đồ thị của hàm số \(y =  - 2{x^2}\) hay không?b) Quan sát dạng đồ...
Đọc tiếp

Xét hàm số \(y = S(x) =  - 2{x^2} + 20x(0 < x < 10)\)

a) Trên mặt phẳng tọa độ Oxy, biểu diễn tọa độ các điểm trong bảng giá trị của hàm số lập được ở Ví dụ 1. Nối các điểm đã vẽ lại ta được dạng đồ thị hàm số \(y =  - 2{x^2} + 20x\)trên khoảng (0; 10) như trong Hình 6.10. Dạng đồ thị \(y =  - 2{x^2} + 20x\) có giống với đồ thị của hàm số \(y =  - 2{x^2}\) hay không?

b) Quan sát dạng đồ thị của hàm số \(y =  - 2{x^2} + 20x\)  trong Hình 6.10, tìm tọa độ điểm cao nhất của đồ thị.

c) Thực hiện phép biến đổi \(y =  - 2{x^2} + 20x =  - 2({x^2} - 10x) =  - 2({x^2} - 2.5.x + 25) + 50 =  - 2{(x - 5)^2} + 50\) Hãy cho biết giá trị lớn nhất của diện tích mảnh đất được rào chắn. Từ đó suy ra lời giải của bài toán ở phần mở đầu.

1
HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Ta có đồ thị hàm số \(y =  - 2{x^2}\)

 

Nhìn vào 2 đồ thị, ta thấy dạng đồ thị của hàm số \(y =  - 2{x^2} + 20x\)giống với dạng đồ thị \(y =  - 2{x^2}\)

b) Tọa độ điểm cao nhất là \(\left( {5;50} \right)\)

c) Ta có: \(S(x) = y =  - 2{x^2} + 20x =  - 2({x^2} - 10x) =  - 2({x^2} - 2.5.x + 25) + 50 =  - 2{(x - 5)^2} + 50\)

\({(x - 5)^2} \ge 0 \Rightarrow  - 2{(x - 5)^2} + 50 \le 50 \Rightarrow S(x) \le 50\)

Do đó diện tích lớn nhất của mảnh đất rào chắn là 50 \(({m^2})\) khi x = 5.