Trên hình 13 người ta cho ∠A4 ̂=∠B2 ̂= 45o
Hãy tính ∠A1 ; ∠B3
Gợi ý: Chú ý các cặp góc kề bù
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ba cặp góc đồng vị
∠A1 = ∠B1 = 135o
∠A4 = ∠B4 = 45o
∠A3 = ∠B3 = 135o
Do a // b nên ta có:
\(\widehat{A_1}=\widehat{A_3}=54^0(đối đỉnh)\)
\(\widehat{A_3}+\widehat{A_2}=180^0\)
\(\Rightarrow\)\(\widehat{A_2}=180^0-54^0=126^0\)
a)\(\widehat{B_2}=\widehat{A_3}=54^0(đồng vị)\)
b)\(\widehat{A_2}=\widehat{A_4}=126^0(đối đỉnh)\)
\(\Rightarrow\)\(\widehat{A_4}=\widehat{B_3}=126^0(đồng vị)\)
\(\widehat{A_1}<\widehat{B_3}(54^0<126^0)\)
c)\(\widehat{A_4}+\widehat{B_2}=126^0+54^0=180^0\)
Tham khảo : Câu hỏi của huy nguyễn - Toán lớp 7 - Học toán với OnlineMath
a, a//b \(\Rightarrow\widehat{A_4}=\widehat{B_1}=37^0\left(so.le.trong\right)\)
b, a//b \(\Rightarrow\widehat{A_1}=\widehat{B_4}\left(đồng.vị\right)\)
c, \(\widehat{B_2}+\widehat{B_1}=180^0\left(kề.bù\right)\Rightarrow\widehat{B_2}=180^0-37^0=143^0\)
a. \(A_4=B_2=37^0\left(slt\right)\)
b. \(A_1=B_1\left(dongvi\right)\)
c. \(B_3=180^0-B_2=180^0-37^0=143^0\left(kebu\right)\)
a b c 1 2 3 4 1 2 3 4 A B
A1=55o (đồng vị); A2=180o-55o=125o (kề bù với A1); A3=55o (đối đỉnh với A1); A4=125o (đối đỉnh với A2);
B2=125o (đồng vị với A2); B3=55o (đối đỉnh với B1); B4=125o (đối đỉnh với B2)
Ta có: ∠A1 + ∠A4 = 180o ⇒ ∠A1 = 180o - ∠A4 = 180o - 45o = 135o
∠B2 + ∠B3 = 180o ⇒ ∠B3 = 180o - ∠B2 = 180o- 45o = 135o