Giải và biện luận PT sau:
1 , \(\left(m-1\right)x^2+2\left(m+2\right)x+m+3=0\)
2 ,\((m^2-1)x+m-3m+2=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với \(m=-1\Leftrightarrow4x+1=0\Leftrightarrow x=-\dfrac{1}{4}\)
Với \(m=1\Leftrightarrow1=0\Leftrightarrow x\in\varnothing\)
Với \(m\ne\pm1\)
\(\Delta=4\left(m-1\right)^2-4\left(m^2+1\right)\\ \Delta=4m^2-8m+4-4m^2-4\\ \Delta=-8m\)
PT vô nghiệm \(\Leftrightarrow-8m< 0\Leftrightarrow m>0\)
PT có nghiệm kép \(\Leftrightarrow-8m=0\Leftrightarrow m=0\)
Khi đó \(x=\dfrac{2\left(m-1\right)}{2\left(m^2-1\right)}=\dfrac{1}{m+1}\)
PT có 2 nghiệm phân biệt \(\Leftrightarrow-8m>0\Leftrightarrow m< 0\)
Khi đó \(\left[{}\begin{matrix}x_1=\dfrac{2\left(m-1\right)-\sqrt{-8m}}{2\left(m^2-1\right)}\\x_2=\dfrac{2\left(m-1\right)+\sqrt{-8m}}{2\left(m^2+1\right)}\end{matrix}\right.\)
TH1: m=-2
Phương trình sẽ trở thành:
\(\left(-2+2\right)x^2-2\left(-2-1\right)x+3-\left(-2\right)=0\)
=>6x+5=0
=>x=-5/6
TH2: m<>-2
\(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\left(m+2\right)\left(3-m\right)\)
\(=4\left(m^2-2m+1\right)+4\left(m^2-m-6\right)\)
\(=4\left(2m^2-3m-5\right)\)
\(=4\left(2m-5\right)\left(m+1\right)\)
Để phương trình có hai nghiệm phân biệt thì Δ>0
=>4(2m-5)(m+1)>0
=>(2m-5)(m+1)>0
=>\(\left[{}\begin{matrix}m>\dfrac{5}{2}\\m< -1\end{matrix}\right.\)
Để phương trình có nghiệm kép thì Δ=0
=>4(2m-5)(m+1)=0
=>(2m-5)(m+1)=0
=>\(\left[{}\begin{matrix}m=\dfrac{5}{2}\\m=-1\end{matrix}\right.\)
Để phương trình vô nghiệm thì Δ<0
=>(2m-5)(m+1)<0
=>\(-1< m< \dfrac{5}{2}\)
Bài 2:
a: \(\Leftrightarrow\left(x^2-3x+2\right)\left(x^2-3x+3\right)=0\)
=>x^2-3x+2=0
=>x=2 hoặc x=1
b: \(\Leftrightarrow\left(\left|x\right|\right)^2-\left|x\right|+m=0\)
Để phương trình có nghiệm thì \(\text{Δ}>=0\)
=>1-4m>=0
=>m<=1/4
Để phương trình vô nghiệm thì Δ<0
=>m>1/4
c: TH1: m=1
=>-2x+2=0
=>x=1
TH2: m<>1
\(\text{Δ}=\left(-2\right)^2-4\left(1-m\right)\cdot2m\)
\(=4+8m\left(m-1\right)\)
\(=8m^2-8m+4\)
Để phương trình có nghiệm thì Δ>=0
=>\(m\in R\)
a) \(\left|2x-5m\right|=2x-3m\)
Điều kiện có nghiệm của phương trình là: \(2x-3m\ge0\)\(\Leftrightarrow x\ge\dfrac{3m}{2}\). (1)
pt\(\Leftrightarrow\left[{}\begin{matrix}2x-5m=2x-3m\\2x-5m=-\left(2x-3m\right)\end{matrix}\right.\).
Th1. \(2x-5m=2x-3m\Leftrightarrow-5m=-3m\)\(\Leftrightarrow m=0\).
Thay \(m=0\) vào phương trình ta có: \(\left|2x\right|=2x\) (*)
Dễ thấy (*) có tập nghiệm là: \(\left[0;+\infty\right]\) (Thỏa mãn (1)).
Th2. \(2x-5m=-\left(2x-3m\right)\)\(\Leftrightarrow2x-5m=-2x+3m\)
\(\Leftrightarrow4x=8m\)\(\Leftrightarrow x=2m\).
Để \(x=2m\) là nghiệm của phương trình thì:
\(2m\ge\dfrac{3}{2}m\)\(\Leftrightarrow m\ge0\).
Biện luận:
Với m = 0 phương trình có tập nghiệm là: \(\left[0;+\infty\right]\).
Với \(m>0\) phương trình có nghiệm duy nhất \(x=2m\).
Với m < 0 phương trình vô nghiệm.
b)TXĐ: D = R
\(\left|3x+4m\right|=\left|4x-7m\right|\)\(\Leftrightarrow\left[{}\begin{matrix}3x+4m=4x-7m\\3x+4m=-\left(4x-7m\right)\end{matrix}\right.\)
Th1. \(3x+4m=4x-7m\)\(\Leftrightarrow x=11m\)
Th2. \(3x+4m=-4x+7m\) \(\Leftrightarrow7x=3m\)\(\Leftrightarrow x=\dfrac{3m}{7}\).
Biện luận:
Với mọi giá trị \(m\in R\) phương trình luôn có hai nghiệm:
\(x=11m\) hoặc \(x=\dfrac{3m}{7}\).