Hãy giải phương trình : 2x2 + 5x + 2 = 0 theo các bước như ví dụ 3 trong bài học.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Lưu ý: Các phần giải thích các bạn có thể không trình bày vào bài làm)
2 x 2 + 5 x + 2 = 0 ⇔ 2 x 2 + 5 x = − 2
(Chuyển 2 sang vế phải)
(Tách thành và thêm bớt để vế trái thành bình phương).
Vậy phương trình có hai nghiệm
Bài giải
2x2 + 5x + 2 = 0 ⇔ 2x2 + 5x = -2 ⇔ x2 + x = -1
⇔ x2 + 2 . x . + = -1 + ⇔ (x + )2 =
=> x + = => x =
Hoặc x + = => x = -2.
\(2x^2+5x+2=0\)
\(\Rightarrow2x^2+5x+\frac{50}{16}-\frac{18}{16}=0\)
\(\Rightarrow2\left(x^2+2.\frac{5}{4}x+\frac{25}{16}\right)=\frac{9}{8}\)
\(\Rightarrow\left(x+\frac{5}{4}\right)^2=\frac{9}{16}\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{5}{4}=\frac{3}{4}\\x+\frac{5}{4}=\frac{-3}{4}\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=-2\end{cases}}\)
Ta có :
\(2x^2+5x+2=0\)
\(\Leftrightarrow2x^2+5x=-2\)
\(\Leftrightarrow x^2+\frac{5}{2}x=-1\)
\(\Leftrightarrow x^2+2.x.\frac{5}{4}=-1\)
\(\Leftrightarrow x^2+2.x.\frac{5}{4}+\left(\frac{5}{4}\right)^2=-1+\left(\frac{5}{4}\right)^2\)
\(\Leftrightarrow\left(x+\frac{5}{4}\right)^2=-1+\frac{25}{16}\)
\(\Leftrightarrow\left(x+\frac{5}{4}\right)^2=\frac{9}{16}\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{5}{4}=\frac{3}{4}\\x+\frac{5}{4}=-\frac{3}{4}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=-2\end{cases}}}\)
Vậy phương trình đã cho có hai nghiệm là........
Các bước chủ yếu để giải phương trình trong ví dụ 1:
- Thực hiện phép tính để bỏ dấu ngoặc
- Chuyển các hạng tử chứa ẩn sang một vế, các hằng số sang vế kia
- Thu gọn và giải phương trình nhận được
Các bước chủ yếu để giải phương trình trong ví dụ 2:
- Quy đồng mẫu hai vế
- Nhân hai vế với mẫu để khử mẫu
- Chuyển các hạng tử chứa ẩn sang một vế, các hằng số sang vế kia
- Thu gọn và giải phương trình nhận được
a) PT bậc nhất một ẩn là: x-2=0; 4-0,2x=0
b) Giải:
x-2=0 (*)
⟺ x=-2
Vậy tập nghiệm của pt (*) là S={-2}
4-0,2x=0 (**)
⟺-0,2x=-4
⟺x=-4/-0,2=20
Vậy tập nghiệm của pt (**) là S={20}
a: \(\Leftrightarrow\left(-x+3\right)\left(x+6\right)=18\)
\(\Leftrightarrow-x^2-6x+3x+18-18=0\)
\(\Leftrightarrow-x\left(x+3\right)=0\)
=>x=0 hoặc x=-3
b: \(\Leftrightarrow x\left(3x^2+6x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\3x^2+6x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+2x-\dfrac{4}{3}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\left(x+1\right)^2=\dfrac{7}{3}\end{matrix}\right.\Leftrightarrow x\in\left\{0;\dfrac{\sqrt{21}}{3}-1;\dfrac{-\sqrt{21}}{3}-1\right\}\)
c: =>x(3x-5)=0
=>x=0 hoặc x=5/3
d: =>(x-2)(x+2)=0
=>x=2 hoặc x=-2
1) Ta có: \(x^2-4x+4=0\)
\(\Leftrightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x-2=0\)
hay x=2
Vậy: S={2}
(Lưu ý: Các phần giải thích các bạn có thể không trình bày vào bài làm)
2x2 + 5x + 2 = 0
⇔ 2x2 + 5x = -2 (Chuyển 2 sang vế phải)
(Tách thành và thêm bớt để vế trái thành bình phương).
Vậy phương trình có hai nghiệm