K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2018

* Giả sử 5 2  là số hữu tỉ a, nghĩa là: 5 2  = a

Suy ra:  2  = a / 5 hay  2  là số hữu tỉ.

Điều này vô lí vì  2  là số vô tỉ.

Vậy 5 2  là số vô tỉ.

* Giả sử 3 +  2  là số hữu tỉ b, nghĩa là:

3 +  2  = b

Suy ra:  2  = b - 3 hay  2  là số hữu tỉ.

Điều này vô lí vì  2  là số vô tỉ.

Vậy 3 +  2  là số vô tỉ.

27 tháng 5 2017

Căn bậc hai. Căn bậc ba

4 tháng 9 2019

a. Giả sử \(\sqrt{3}\) không phải là số vô tỉ. Khi đó tồn tại các số nguyên a và b sao cho √3 = a/b với b > 0. Hai số a và b không có ước chung nào khác 1 và -1.

Ta có: (√3 )2 = (a/b )2 hay a2 = 3b2 (1)

Kết quả trên chứng tỏ a chia hết cho 3, nghĩa là ta có a = 3c với c là số nguyên.

Thay a = 3c vào (1) ta được: (3c)2 = 3b2 hay b2 = 3c2

Kết quả trên chứng tỏ b chia hết cho 3.

Hai số a và b đều chia hết cho 3, trái với giả thiết a và b không có ước chung nào khác 1 và -1.

Vậy √3 là số vô tỉ.

b. * Giả sử 5√2 là số hữu tỉ a, nghĩa là: 5√2 = a

Suy ra: √2 = a / 5 hay √2 là số hữu tỉ.

Điều này vô lí vì √2 là số vô tỉ.

Vậy 5√2 là số vô tỉ.

* Giả sử 3 + √2 là số hữu tỉ b, nghĩa là:

3 + √2 = b

Suy ra: √2 = b - 3 hay √2 là số hữu tỉ.

Điều này vô lí vì √2 là số vô tỉ.

Vậy 3 + √2 là số vô tỉ.

15 tháng 3 2020

a) Giả sử \(\sqrt{2}\) là số hữu tỉ nên suy ra : \(\sqrt{2}=\frac{a}{b}\) ( a ; b \(\in\) N* ) ; ( a ; b ) = 1

\(\implies\) \(b\sqrt{2}=a\)

\(\implies\) \(b^2.2=a^2\)

\(\implies\) \(a\) chia hết cho \(2\) ; mà \(2\) là số nguyên tố

\(\implies\) \(a\) chia hết cho \(2\) 

\(\implies\) \(a^2\) chia hết cho \(4\)

\(\implies\) \(b^2.2\) chia hết cho \(4\)

\(\implies\) \(b^2\) chia hết cho \(2\) ; mà \(2\) là số nguyên tố

\(\implies\) \(b\) chia hết cho \(2\)

\( \implies\) \(\left(a;b\right)=2\) mâu thuẫn với \(\left(a;b\right)=1\)

\( \implies\) Điều giả sai

\( \implies\) \(\sqrt{2}\) là số vô tỉ ( đpcm )

b) Giả sử \(5-\sqrt{2}\) là số hữu tỉ nên suy ra : \(5-\sqrt{2}=m\) ( m \(\in\) Q )

\( \implies\) \(\sqrt{2}=5-m\) ; mà \(5\) là số hữu tỉ ; \(m\) là số hữu tỉ nên suy ra : \(5-m\) là số hữu tỉ 

 Mà theo câu a ; \(\sqrt{2}\) là số vô tỉ 

\( \implies\) Mâu thuẫn

\( \implies\) \(5-\sqrt{2}\) là số vô tỉ ( đpcm )

15 tháng 3 2020

cậu bỏ cho tớ dòng thứ 5 với dòng ấy tớ ghi thừa

11 tháng 7 2023

Giả sử \(2\sqrt{2}+\sqrt{3}=x\left(x\in Q\right)\)

\(\Leftrightarrow\left(2\sqrt{2}+\sqrt{3}\right)^2=x^2\\ \Leftrightarrow11+4\sqrt{6}=x^2\\ \Leftrightarrow\sqrt{6}=\dfrac{x^2-11}{4}\)

Vì \(\sqrt{6}\) là số vô tỉ nên \(\dfrac{x^2-11}{4}\) là số vô tỉ \(\Rightarrow\) \(x^2\) là số vô tỉ, \(\Rightarrow x\) là số vô tỉ (vô lý)

Vậy \(2\sqrt{2}+\sqrt{3}\) là số vô tỉ

Giả sử \(\sqrt{3}-\sqrt{2}=x\left(x\in Q\right)\)  

\(\Leftrightarrow\left(\sqrt{3}-\sqrt{2}\right)^2=x^2\\ \Rightarrow5-2\sqrt{6}=x^2\\ \Rightarrow\sqrt{6}=\dfrac{5-x^2}{2}\)

Vì \(\sqrt{6}\) là số vô tỉ nên \(\dfrac{5-x^2}{2}\Rightarrow\) \(x^2\)là số vô tỉ, \(\Rightarrow x\) là số vô tỉ (vô lý)

Vậy \(\sqrt{3}-\sqrt{2}\) là số vô tỉ

8 tháng 9 2015

giả sử căn 2 là số hữu tỉ thì có dạng m/n (m,n tối giản)

nên 2=m^2/n^2

<=>m^2=2n^2
=>m chia hết cho 2 đặt m=2k nên m^2=4k^2

nên n chia hết cho 2 

từ trên ta có m và n cùng chia hết cho 2 
=>mâu thuẫn giả thuyết
tương tự căn 3 căn 5 cũng như vậy

12 tháng 9 2017