Tìm a để bất phương trình 1 6 2 t 2 + 4 + a < 3 2 ( t + 1 ) − 2 t 2 + 1 nhận t = -4 là nghiệm.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{1}{2}\left(x+1\right)\left(3-x\right)+x=3\)
\(\Leftrightarrow\frac{1}{2}\left(x+1\right)\left(3-x\right)-\left(3-x\right)=0\)
\(\Leftrightarrow\left(3-x\right)\left(\frac{x}{2}+\frac{1}{2}-1\right)=0\)
\(\Leftrightarrow\left(3-x\right)\frac{x-1}{2}=0\Leftrightarrow x=3;x=1\)
b, \(\left(2x+1\right)\left(1-x\right)+2x=2\)
\(\Leftrightarrow\left(2x+1\right)\left(1-x\right)-2\left(1-x\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(1-x\right)=0\Leftrightarrow x=\frac{1}{2};x=1\)
c, Vì t = 3 là nghiệm của phương trình nên thay t = 3 vào phương trình trên ta được :
\(\Rightarrow\frac{2}{5}-3-a-3=2a\left(a+2\right)\Leftrightarrow\frac{2}{5}-6-a=2a\left(a+2\right)\)
\(\Leftrightarrow\frac{2-30-5a}{5}=\frac{10a\left(a+2\right)}{5}\)Khử mẫu :
\(\Rightarrow-28-5a=10a^2+20a\)
\(\Leftrightarrow-10a^2-25a-28=0\) tự làm nốt nhé !!!
d, \(\left(x-2\right)^2=\left(2x+3\right)^2\)
TH1 : \(x-2=2x+3\Leftrightarrow x=-5\)
TH2 : \(x-2=-2x-3\Leftrightarrow x=-\frac{1}{3}\)
b: x1=3x2 và x1+x2=2m-2
=>3x2+x2=2m-2 và x1=3x2
=>x2=0,5m-0,5 và x1=1,5m-1,5
x1*x2=-2m
=>-2m=(0,5m-0,5)(1,5m-1,5)
=>-2m=0,75(m^2-2m+1)
=>0,75m^2-1,5m+0,75+2m=0
=>\(m\in\varnothing\)
c: x1/x2=3
x1+x2=2m-2
=>x1=3x2 và x1+x2=2m-2
Cái này tương tự câu b nên kết quả vẫn là ko có m thỏa mãn
Thay t = 3 vào phương trình, ta được:
\(1-a-3=2a\left(a+2\right)\)
\(\Leftrightarrow-2-a=2a^2+4a\)
\(\Leftrightarrow2a^2+5a+2=0\)
Ta có \(\Delta=5^2-4.2.2=9,\sqrt{\Delta}=3\)
\(\Rightarrow\orbr{\begin{cases}a=\frac{-5+3}{4}=\frac{-1}{2}\\a=\frac{-5-3}{4}=-2\end{cases}}\)
hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Bài 1:
c) ĐKXĐ: \(x\notin\left\{\dfrac{1}{4};-\dfrac{1}{4}\right\}\)
Ta có: \(\dfrac{3}{1-4x}=\dfrac{2}{4x+1}-\dfrac{8+6x}{16x^2-1}\)
\(\Leftrightarrow\dfrac{-3\left(4x+1\right)}{\left(4x-1\right)\left(4x+1\right)}=\dfrac{2\left(4x-1\right)}{\left(4x+1\right)\left(4x-1\right)}-\dfrac{6x+8}{\left(4x-1\right)\left(4x+1\right)}\)
Suy ra: \(-12x-3=8x-2-6x-8\)
\(\Leftrightarrow-12x-3-2x+10=0\)
\(\Leftrightarrow-14x+7=0\)
\(\Leftrightarrow-14x=-7\)
\(\Leftrightarrow x=\dfrac{1}{2}\)(nhận)
Vậy: \(S=\left\{\dfrac{1}{2}\right\}\)
Tìm được a < - 65 2