K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2017

Tại a = -9 ta được:

= 3√-(-9) - |3 + 2(-9)|

= 3√32 - |3 - 18|

= 3.3 - |-15| = 9 - 15 = -6

17 tháng 5 2021
a) √ − 9 a − √ 9 + 12 a + 4 a 2 = √ − 9 a − √ 3 2 + 2.3 .2 a + ( 2 a ) 2 = √ 3 2 ⋅ ( − a ) − √ ( 3 + 2 a ) 2 = 3 √ − a − | 3 + 2 a | Thay a = − 9 ta được: 3 √ 9 − | 3 + 2 ⋅ ( − 9 ) | = 3.3 − 15 = − 6 . b) Điều kiện: m ≠ 2 1 + 3 m m − 2 √ m 2 − 4 m + 4 = 1 + 3 m m − 2 √ m 2 − 2.2 ⋅ m + 2 2 = 1 + 3 m m − 2 √ ( m − 2 ) 2 = 1 + 3 m | m − 2 | m − 2 +) m > 2 , ta được: 1 + 3 m m − 2 √ m 2 − 4 m + 4 = 1 + 3 m . ( 1 ) +) m < 2 , ta được: 1 + 3 m m − 2 √ m 2 − 4 m + 4 = 1 − 3 m . ( 2 ) Với m = 1 , 5 < 2 . Thay vào biểu thức ( 2 ) ta có: 1 − 3 m = 1 − 3.1 , 5 = − 3 , 5 Vậy giá trị biểu thức tại m = 1 , 5 là − 3 , 5 . c) √ 1 − 10 a + 25 a 2 − 4 a = √ 1 − 2.1 .5 a + ( 5 a ) 2 − 4 a = √ ( 1 − 5 a ) 2 − 4 a = | 1 − 5 a | − 4 a +) Với a < 1 5 , ta được: 1 − 5 a − 4 a = 1 − 9 a . ( 3 ) +) Với a ≥ 1 5 , ta được: 5 a − 1 − 4 a = a − 1 . ( 4 ) Vì a = √ 2 > 1 5 . Thay vào biểu thức ( 4 ) ta có: a − 1 = √ 2 − 1 . Vậy giá trị của biểu thức tại a = √ 2 là √ 2 − 1 . d) 4 x − √ 9 x 2 + 6 x + 1 = 4 x − √ ( 3 x ) 2 + 2.3 x + 1 = 4 x − √ ( 3 x + 1 ) 2 = 4 x − | 3 x + 1 | +) Với 3 x + 1 ≥ 0 ⇔ x ≥ − 1 3 , ta có: 4 x − ( 3 x + 1 ) = 4 x − 3 x − 1 = x − 1 . ( 5 ) +) Với 3 x + 1 < 0 ⇔ x < − 1 3 , ta có: 4 x + ( 3 x + 1 ) = 4 x + 3 x + 1 = 7 x + 1 . ( 6 ) Vì x = − √ 3 < − 1 3 . Thay vào biểu thức ( 6 ) , ta có: 7 x + 1 = 7 . ( − √ 3 ) + 1 = − 7 √ 3 + 1 . Giá trị của biểu thức tại x = − √ 3 là − 7 √ 3 + 1
19 tháng 5 2021

a) \sqrt{-9a}-\sqrt{9+12 a+4 a^{2}}9a9+12a+4a2

=\sqrt{-9 a}-\sqrt{3^{2}+2.3 .2 a+(2 a)^{2}}=9a32+2.3.2a+(2a)2

=\sqrt{3^{2} \cdot(-a)}-\sqrt{(3+2 a)^{2}}=32(a)(3+2a)2

=3 \sqrt{-a}-|3+2 a|=3a3+2a

Thay a=-9a=9 ta được:

3 \sqrt{9}-|3+2 \cdot(-9)|=3.3-15=-6393+2(9)=3.315=6.

b) Điều kiện: m \neq 2m=2

1+\dfrac{3 m}{m-2} \sqrt{m^{2}-4 m+4}1+m23mm24m+4

=1+\dfrac{3 m}{m-2} \sqrt{m^{2}-2.2 \cdot m+2^{2}}=1+m23mm22.2m+22

=1+\dfrac{3 m}{m-2} \sqrt{(m-2)^{2}}=1+m23m(m2)2

=1+\dfrac{3 m|m-2|}{m-2}=1+m23mm2

+) m>2m>2, ta được: 1+\dfrac{3 m}{m-2} \sqrt{m^{2}-4 m+4}=1+3 m1+m23mm24m+4=1+3m(1)(1)

+) m<2m<2, ta được: 1+\dfrac{3 m}{m-2} \sqrt{m^{2}-4 m+4}=1-3 m1+m23mm24m+4=13m(2)(2)

Với m=1,5<2m=1,5<2. Thay vào biểu thức (2)(2) ta có: 1-3 m=1-3.1,5=-3,513m=13.1,5=3,5

Vậy giá trị biểu thức tại m=1,5m=1,5 là -3,53,5.

c) \sqrt{1-10 a+25 a^{2}}-4a110a+25a24a

=\sqrt{1-2.1 .5 a+(5 a)^{2}}-4 a=12.1.5a+(5a)24a

=\sqrt{(1-5a)^{2}}-4 a=(15a)24a

=|1-5 a|-4 a=15a4a

+) Với a <\dfrac{1}{5}a<51, ta được: 1-5a-4 a=1-9a15a4a=19a(3)(3)

+) Với a \ge \dfrac{1}{5}a51, ta được: 5 a-1-4 a=a-15a14a=a1(4)(4)

Vì a=\sqrt{2}>\dfrac{1}{5}a=2>51. Thay vào biểu thức (4)(4) ta có: a-1=\sqrt{2}-1a1=21.

Vậy giá trị của biểu thức tại a=\sqrt{2}a=2 là \sqrt{2}-121.

d) 4 x-\sqrt{9 x^{2}+6 x+1}4x9x2+6x+1

=4 x-\sqrt{(3 x)^{2}+2.3 x+1}=4 x-\sqrt{(3 x+1)^{2}}=4x(3x)2+2.3x+1=4x(3x+1)2

=4 x-|3x+1|=4x3x+1

+) Với 3x+1 \geq 03x+10 \Leftrightarrow x \ge -\dfrac{1}{3}x31, ta có: 4 x-(3x+1)=4 x-3 x-1 =x-14x(3x+1)=4x3x1=x1(5)(5)

+) Với 3x+1<03x+1<0 \Leftrightarrow x <-\dfrac{1}{3}x<31, ta có: 4 x+(3 x+1)=4 x+3x+1=7x+14x+(3x+1)=4x+3x+1=7x+1(6)(6)

Vì x=-\sqrt{3}<-\dfrac{1}{3}x=3<31. Thay vào biểu thức (6)(6), ta có: 7 x+1=7 .(-\sqrt{3})+1=-7 \sqrt{3}+17x+1=7 .(3)+1=73+1.

Giá trị của biểu thức tại x=-\sqrt{3}x=3 là -7 \sqrt{3}+173+1.

27 tháng 2 2018

Để học tốt Toán 9 | Giải bài tập Toán 9

Tại a = -9 ta được:

= 3√-(-9) - |3 + 2(-9)|

= 3√32 - |3 - 18|

= 3.3 - |-15| = 9 - 15 = -6

Để học tốt Toán 9 | Giải bài tập Toán 9

Tại a = √2 ta được:

= |1 - 5√2| - 4√2

= (5√2 - 1) - 4√2

= √2 - 1

Để học tốt Toán 9 | Giải bài tập Toán 9

Tại x = -√3 ta được:

= 4(-√3) - |3(-√3) + 1|

= -4√3 - |-3√3 + 1|

= -4√3 - (3√3 - 1)

= -7√3 + 1

31 tháng 12 2023

a: Thay x=49 vào A, ta được:

\(A=\dfrac{2\cdot7+1}{7-3}=\dfrac{14+1}{4}=\dfrac{15}{4}\)

b: \(B=\dfrac{2x+36}{x-9}-\dfrac{9}{\sqrt{x}-3}-\dfrac{\sqrt{x}}{\sqrt{x}+3}\)

\(=\dfrac{2x+36}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{9}{\sqrt{x}-3}-\dfrac{\sqrt{x}}{\sqrt{x}+3}\)

\(=\dfrac{2x+36-9\left(\sqrt{x}+3\right)-\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{2x+36-9\sqrt{x}-27-x+3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x-6\sqrt{x}+9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\dfrac{\left(\sqrt{x}-3\right)^2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\)

c: \(P=A\cdot B=\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\cdot\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}=\dfrac{2\sqrt{x}+1}{\sqrt{x}+3}\)

P>1 khi P-1>0

=>\(\dfrac{2\sqrt{x}+1-\sqrt{x}-3}{\sqrt{x}+3}>0\)

=>\(\sqrt{x}-2>0\)

=>\(\sqrt{x}>2\)

=>x>4

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}x>4\\x\ne9\end{matrix}\right.\)

3 tháng 5 2022

a. = \(\dfrac{2}{x+5}\)+\(\dfrac{2x+30}{\left(x-5\right)\left(x+5\right)}\)

= 2.(x-5) + 2x+30

= 2x-10+2x+30

=4x+20

b. x=9

4x+20

=4.9+20

=36+20

=56

Câu 2: 

a: Ta có: \(P=3x-\sqrt{x^2-10x+25}\)

\(=3x-\left|x-5\right|\)

\(=\left[{}\begin{matrix}3x-x+5=2x+5\left(x\ge5\right)\\3x+x-5=4x-5\left(x< 5\right)\end{matrix}\right.\)

b: Vì x=2<5 nên \(P=4\cdot2-5=8-5=3\)

9 tháng 3 2022

chịu

NV
26 tháng 3 2023

1.

\(A=\dfrac{2x-9}{\left(x-2\right)\left(x-3\right)}-\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x-2\right)\left(x-3\right)}+\dfrac{\left(2x+4\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\)

\(=\dfrac{2x-9-\left(x^2-9\right)+\left(2x^2-8\right)}{\left(x-2\right)\left(x-3\right)}\)

\(=\dfrac{x^2+2x-8}{\left(x-2\right)\left(x-3\right)}=\dfrac{\left(x-2\right)\left(x+4\right)}{\left(x-2\right)\left(x-3\right)}\)

\(=\dfrac{x+4}{x-3}\)

b.

\(A=2\Rightarrow\dfrac{x+4}{x-3}=2\Rightarrow x+4=2\left(x-3\right)\)

\(\Rightarrow x=10\) (thỏa mãn)

2.

\(x^4+2x^2y+y^2-9=\left(x^2+y\right)^2-3^2=\left(x^2+y-3\right)\left(x^2+y+3\right)\)

26 tháng 3 2023

Em cảm ơn ạ

5 tháng 1 2023

\(a,\dfrac{x^2+6x+9}{x+3}\\ đk:x\ne-3\\ =\dfrac{\left(x+3\right)^2}{x+3}=x+3\)

b, Thay \(x=-2\left(t/mđk\right)\) vào 

\(-2+3=1\)

Vậy tại \(x=-2\) thì biểu thức = 1 

5 tháng 1 2023

\(A=\dfrac{x^2+6x+9}{x+3}\)

\(A=\dfrac{x^2+2.x.3+3^2}{x+3}\)

\(A=\dfrac{\left(x+3\right)^2}{x+3}\)

\(A=x+3\)

b) Thay x = -2 vào A ta được A = -2 + 3 = 1

Vậy khi x = -2 thì A = 1

\(A=\dfrac{3-x}{x+3}.\dfrac{x^2+6x+9}{x^2-9}+\dfrac{x}{x+3}\left(ĐKXĐ:x\ne\pm3\right)\)

a, \(A=\dfrac{-\left(x-3\right)\left(x+3\right)^2}{\left(x+3\right)^2\left(x-3\right)}+\dfrac{x}{x+3}\)

\(=-1+\dfrac{x}{x+3}=\dfrac{-x-3+x}{x+3}=\dfrac{-3}{x+3}\)

b, \(x^2-2x-3=0\Leftrightarrow x^2-3x+x-3\Leftrightarrow x\left(x-3\right)+\left(x-3\right)\Leftrightarrow\left(x-3\right)\left(x+1\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

TH1 : Nếu x = 3 thì gt của biểu thức \(A=\dfrac{-3}{3+3}=-\dfrac{3}{6}=-\dfrac{1}{2}\)

TH2 : Nếu x = -2 thì gt của biểu thức \(A=\dfrac{-3}{-2+3}=-3\)

c, Để A nhận giá trị nguyên thì \(x+3\inƯ\left(3\right)\) ( Ư(-3 ) cũng được như nhau nhé ! )

Xét bảng :

x + 3 x
1 -2
-1 -4
3 0
-3 -6

Vậy để A nguyên thì \(x\in\left\{-6;-4;-2;0\right\}\)