K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2017

x4 – 5x2 + 4 = 0 (1)

Đặt x2 = t, điều kiện t ≥ 0.

Khi đó (1) trở thành : t2 – 5t + 4 = 0 (2)

Giải (2) : Có a = 1 ; b = -5 ; c = 4 ⇒ a + b + c = 0

⇒ Phương trình có hai nghiệm t1 = 1; t2 = c/a = 4

Cả hai giá trị đều thỏa mãn điều kiện.

+ Với t = 1 ⇒ x2 = 1 ⇒ x = 1 hoặc x = -1;

+ Với t = 4 ⇒ x2 = 4 ⇒ x = 2 hoặc x = -2.

Vậy phương trình (1) có tập nghiệm S = {-2 ; -1 ; 1 ; 2}.

23 tháng 7 2019

a)  x 4   –   5 x 2   +   4   =   0   ( 1 )

Đặt x 2   =   t, điều kiện t ≥ 0.

Khi đó (1) trở thành :  t 2   –   5 t   +   4   =   0   ( 2 )

Giải (2) : Có a = 1 ; b = -5 ; c = 4 ⇒ a + b + c = 0

⇒ Phương trình có hai nghiệm  t 1   =   1 ;   t 2   =   c / a   =   4

Cả hai giá trị đều thỏa mãn điều kiện.

+ Với t = 1 ⇒ x 2   =   1  ⇒ x = 1 hoặc x = -1;

+ Với t = 4 ⇒ x 2   =   4  ⇒ x = 2 hoặc x = -2.

Vậy phương trình (1) có tập nghiệm S = {-2 ; -1 ; 1 ; 2}.

b)  2 x 4   –   3 x 2   –   2   =   0 ;   ( 1 )

Đặt   x 2   =   t , điều kiện t ≥ 0.

Khi đó (1) trở thành :  2 t 2   –   3 t   –   2   =   0   ( 2 )

Giải (2) : Có a = 2 ; b = -3 ; c = -2

⇒   Δ   =   ( - 3 ) 2   -   4 . 2 . ( - 2 )   =   25   >   0

⇒ Phương trình có hai nghiệm

Giải bài 34 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

Chỉ có giá trị t 1   =   2  thỏa mãn điều kiện.

+ Với t = 2 ⇒ x 2   =   2  ⇒ x = √2 hoặc x = -√2;

Vậy phương trình (1) có tập nghiệm S = {-√2 ; √2}.

c)  3 x 4   +   10 x 2   +   3   =   0   ( 1 )

Đặt x 2   =   t , điều kiện t ≥ 0.

Khi đó (1) trở thành :  3 t 2   +   10 t   +   3   =   0   ( 2 )

Giải (2) : Có a = 3; b' = 5; c = 3

⇒  Δ ’   =   5 2   –   3 . 3   =   16   >   0

⇒ Phương trình có hai nghiệm phân biệt

Giải bài 34 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

Cả hai giá trị đều không thỏa mãn điều kiện.

Vậy phương trình (1) vô nghiệm.

5 tháng 11 2018

x4 + 5x2 + 1 = 0 (1)

Đặt x2 = t, t > 0.

(1) trở thành: t2 + 5t + 1 = 0 (2)

Giải (2):

Có a = 1; b = 5; c = 1

⇒ Δ = 52 – 4.1.1 = 21 > 0

⇒ Phương trình có hai nghiệm:

Giải bài 56 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

Cả hai nghiệm đều < 0 nên không thỏa mãn điều kiện.

Vậy phương trình (1) vô nghiệm.

7 tháng 7 2019

Cả ba phương trình trên đều là phương trình trùng phương.

a)  3 x 4   –   12 x 2   +   9   =   0   ( 1 )

Đặt x 2   =   t ,  t ≥ 0.

(1) trở thành:  3 t 2   –   12 t   +   9   =   0   ( 2 )

Giải (2):

Có a = 3; b = -12; c = 9

⇒ a + b + c = 0

⇒ (2) có hai nghiệm  t 1   =   1   v à   t 2   =   3 .

Cả hai nghiệm đều thỏa mãn điều kiện.

+ t = 3 ⇒ x 2 = 3 ⇒ x = ± 3 + t = 1 ⇒ x 2 = 1 ⇒ x = ± 1

Vậy phương trình có tập nghiệm Giải bài 56 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

b)  2 x 4   +   3 x 2   –   2   =   0   ( 1 )

Đặt x 2   =   t , t ≥ 0.

(1) trở thành:    2 t 2   +   3 t   –   2   =   0   ( 2 )

Giải (2) :

Có a = 2 ; b = 3 ; c = -2

⇒   Δ   =   3 2   –   4 . 2 . ( - 2 )   =   25   >   0

⇒ (2) có hai nghiệm

Giải bài 56 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

t 1   =   - 2   <   0  nên loại.

Giải bài 56 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy phương trình có tập nghiệm Giải bài 56 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

c)  x 4   +   5 x 2   +   1   =   0   ( 1 )

Đặt  x 2   =   t ,   t   >   0 .

(1) trở thành:  t 2   +   5 t   +   1   =   0   ( 2 )

Giải (2):

Có a = 1; b = 5; c = 1

⇒   Δ   =   5 2   –   4 . 1 . 1   =   21   >   0

⇒ Phương trình có hai nghiệm:

Giải bài 56 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

Cả hai nghiệm đều < 0 nên không thỏa mãn điều kiện.

Vậy phương trình (1) vô nghiệm.

9 tháng 7 2017

Đặt m =  x 2  .Điều kiện m ≥ 0

Ta có:  x 4  -8 x 2 – 9 =0 ⇔  m 2  -8m -9 =0

Phương trình m 2  - 8m - 9 = 0 có hệ số a = 1,b = -8,c = -9 nên có dạng a – b + c = 0

suy ra:  m 1  = -1 (loại) ,  m 2  = -(-9)/1 =9

Ta có:  x 2  =9 ⇒ x= ± 3

Vậy phương trình đã cho có 2 nghiệm :  x 1  =3 ; x 2  =-3

29 tháng 8 2019

Ta có: 3 x 4  – 6 x 2 = 0  ⇔ 3 x 2 ( x 2  – 2) = 0

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vậy phương trình đã cho có 3 nghiệm:  x 1  = 0;  x 2  = -√2 ;  x 3  = √2

NV
5 tháng 3 2021

\(\Leftrightarrow\left(x^4+x^3-3x^2\right)-\left(x^3+x^2-3x\right)-\left(x^2+x-3\right)< 0\)

\(\Leftrightarrow x^2\left(x^2+x-3\right)-x\left(x^2+x-3\right)-1\left(x^2+x-3\right)< 0\)

\(\Leftrightarrow\left(x^2-x-1\right)\left(x^2+x-3\right)< 0\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{-1-\sqrt{13}}{2}< x< \dfrac{1-\sqrt{5}}{2}\\\dfrac{-1+\sqrt{13}}{2}< x< \dfrac{1+\sqrt{5}}{2}\end{matrix}\right.\)

28 tháng 11 2017
14 tháng 4 2017

a) Ta có:  Δ = 196 > 0     

Phương trình có 2 nghiệm  x 1 = 3 ,   x 2 = 1 5

b) Đặt  t = x 2 ,   t ≥ 0 , phương trình trở thành  t 2 + 9 t − 10 = 0

Giải ra được t=1 (nhận); t= -10 (loại)

Khi t=1, ta có  x 2 = 1 ⇔ x = ± 1 .

c)  3 x − 2 y = 10 x + 3 y = 7 ⇔ 3 x − 2 y = 10         ( 1 ) 3 x + 9 y = 21       ( 2 )

(1) – (2) từng vế ta được: y=1

Thay y= 1 vào (1) ta được x= 4

Vậy hệ phương trình có nghiệm duy nhất là x= 4; y= 1.

7 tháng 7 2016

\(x^4+2x^2-3=0\)\(\Leftrightarrow\left(x^4+2x^2+1\right)-4=0\Leftrightarrow\left(x^2+1\right)^2-2^2=0\Leftrightarrow\left(x^2-1\right)\left(x^2+3\right)=0\Leftrightarrow x^2-1=0\Leftrightarrow x=\pm1\)

10 tháng 4 2021

Đặt t = x2 ( t ≥ 0 )

pt đã cho trở thành t2 + 2t - 3 = 0

Xét pt bậc 2 ẩn t có a + b + c = 0 nên pt có hai nghiệm t1 = 1(tm) ; t2 = c/a = -3 (ktm)

=> x2 = 1 <=> x = ±1

Vậy ...