K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2017

HS tự chứng minh

góc AEB=góc DAB(=1/2*sđ cung AB(O'))

góc ADB=góc BAE(=1/2*sđ cung AB(O))

=>ΔABD đồng dạng với ΔEBA

=>BA/BE=BD/BA

=>BA^2=BE*BD

góc AEB=góc DAB(=1/2*sđ cung AB(O'))

góc ADB=góc BAE(=1/2*sđ cung AB(O))

=>ΔABD đồng dạng với ΔEBA

=>BA/BE=BD/BA

=>BA^2=BE*BD

góc AEB=góc DAB(=1/2*sđ cung AB(O'))

góc ADB=góc BAE(=1/2*sđ cung AB(O))

=>ΔABD đồng dạng với ΔEBA

=>BA/BE=BD/BA

=>BA^2=BE*BD

góc AEB=góc DAB(=1/2*sđ cung AB(O'))

góc ADB=góc BAE(=1/2*sđ cung AB(O))

=>ΔABD đồng dạng với ΔEBA

=>BA/BE=BD/BA

=>BA^2=BE*BD

góc AEB=góc DAB(=1/2*sđ cung AB(O'))

góc ADB=góc BAE(=1/2*sđ cung AB(O))

=>ΔABD đồng dạng với ΔEBA

=>BA/BE=BD/BA

=>BA^2=BE*BD

góc AEB=góc DAB(=1/2*sđ cung AB(O'))

góc ADB=góc BAE(=1/2*sđ cung AB(O))

=>ΔABD đồng dạng với ΔEBA

=>BA/BE=BD/BA

=>BA^2=BE*BD

a) Xét tứ giác ABOC có 

\(\widehat{ABO}\) và \(\widehat{ACO}\) là hai góc đối

\(\widehat{ABO}+\widehat{ACO}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: ABOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

b) Xét (O) có 

\(\widehat{BDE}\) là góc nội tiếp chắn cung BE

\(\widehat{ABE}\) là góc tạo bởi tiếp tuyến BA và dây cung BE

Do đó: \(\widehat{BDE}=\widehat{ABE}\)(Hệ quả góc tạo bởi tiếp tuyến và dây cung)

hay \(\widehat{ADB}=\widehat{ABE}\)

Xét ΔADB và ΔABE có 

\(\widehat{ADB}=\widehat{ABE}\)(cmt)

\(\widehat{BAD}\) chung

Do đó: ΔADB\(\sim\)ΔABE(g-g)

Suy ra: \(\dfrac{AD}{AB}=\dfrac{AB}{AE}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AB^2=AE\cdot AD\)(đpcm)

27 tháng 11 2017

a) Ta có 

C A B ⏜ = 90 0 O H C ⏜ = 90 0 ⇒ C A B ⏜ + O H C ⏜ = 180 0                            

Vậy tứ giác AOHC nội tiếp.                                                   

b) Ta có  C A D ⏜ = A E C ⏜ ,   A C E ⏜  chung suy ra  Δ A C D ~ Δ E C A  (g.g)

⇒ C A C E = A D A E ⇒ A C . A E = A D . C E

c) Từ E vẽ đường thẳng song song với MN cắt cạnh AB tại I và cắt cạnh BD tại F ⇒ H E I ⏜ = H C O ⏜ .

Vì tứ giác AOHC nội tiếp  ⇒ H A O ⏜ = H C O ⏜ = H E I ⏜ .

Suy ra tứ giác AHIE nội tiếp  ⇒ I H E ⏜ = I A E ⏜ = B D E ⏜ ⇒ H I / / B D .

Mà H là trung điểm của DE=> I là trung điểm của EF. Có EF//MN và IE= IF

=> O là trung điểm của đoạn thẳng MN.

Suy ra tứ giác AMBN là hình bình hành => AM//BN.