K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2016

dùng tc dãy tỉ số = nhau nhé .tìm đc x,y rồi => kq 

29 tháng 2 2016

ta có:\(\frac{x+2}{3}=\frac{y-2}{4}=k\Rightarrow x+2=3k\Rightarrow x=3k-2\)  

                                                                    \(\Rightarrow y-2=4k\Rightarrow y=4k+2\)

ta có:(3k-2)-(4k+2)=5

3k-2-4k-2=5

-k=5

k=-5

ta có:x=-5.3-2=-17

        y=-5.4+2=-18

khi đó:x+y=-17+(-18)=-35

19 tháng 2 2016

đặt \(\frac{x+2}{3}=\frac{y-2}{4}=k\Rightarrow x+2=3k\Rightarrow x=3k-2\)

                                    \(\Rightarrow y-2=4k\Rightarrow y=4k+2\)

ta có:(3k-2)-(4k+2)=5

       3k-2-4k-2=5

       -k-4=5

         k=-9

ta có;\(x=-9\times3-2=-29\)

       \(y=-9\times4+2=-34\)

vậy tổng của x và y là:x+y=-29+(-34)=-63

23 tháng 11 2015

Áp dụng tính chất dãy tỉ số bằng nhau , ta có:

x - 1/2 = y - 2/3 = z-3/4 = 2x - 2 + 3y - 6 - z + 3/4 + 9 - 4 = 95 + -5/10 = 10

x-1/2 = 10 => x =21

y-2/3  =10 => y = 32

z-3/4 = 10 => z = 43

Vậy x + y + z = 21 + 32 + 43 = 96

2 tháng 11 2015

Áp dụng t/c vủa dãy tỉ số bằng nhau ta có \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{x-1-2\left(y-2\right)+3\left(z-3\right)}{2-2.3+3.4}=\frac{\left(x-2y+3z\right)-1+4-9}{8}=\frac{14-6}{8}=1\)

=> x - 1 = 2; y - 2 = 3; z - 3 = 4

=> x = 3; y = 5; z = 7

Vậy...

2 tháng 11 2015

Ta có : \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) và x-2y+3z=14

=> \(\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)và x-2y+3z=14

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)\(=\frac{x-2y+3z-14}{20}=\frac{14-14}{20}=0\)

Từ \(\frac{x-1}{2}=0=>x-1=0=>x=1\)

      \(\frac{2y-4}{6}=0=>2y-4=0=>2y=4=>y=2\)

      \(\frac{3z-9}{12}=0=>3z-9=0=>3z=9=>z=3\)

4 tháng 1 2016

Ta có:\(\frac{x-1}{2}=\frac{2.\left(x-1\right)}{2.2}=\frac{2x-2}{4}\)

\(\frac{y-2}{3}=\frac{3.\left(y-2\right)}{3.3}=\frac{3y-6}{9}\)

Theo t/c dãy tỉ số = nhau:

\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{2x+3y-z-5}{9}=\frac{95-5}{9}=\frac{90}{9}=10\)

=> \(\frac{x-1}{2}=10\Rightarrow x-1=10.2=20\Rightarrow x=20+1=21\)

=> \(\frac{y-2}{3}=10\Rightarrow y-2=10.3=30\Rightarrow y=30+2=32\)

=> \(\frac{z-3}{4}=10\Rightarrow z-3=10.4=40\Rightarrow z=40+3=43\)

Vậy x + y + z = 21 + 32 + 43 = 96.

30 tháng 7 2016

Ta có:

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}\)

\(\Rightarrow\frac{2x-2.1}{4}=\frac{3y-3.2}{9}=\frac{z-3}{4}\)

\(\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+9-4}=\frac{2x-2+3y-6-z+3}{9}=\frac{\left(2x+3y-z\right)+\left(-2+-6+3\right)}{9}=\frac{50+\left(-5\right)}{9}=\frac{45}{9}=5\)\(\Rightarrow\frac{x-1}{2}=5\Rightarrow x=5.2+1=11\)

\(\Rightarrow\frac{y-2}{3}=5\Rightarrow y=5.3+2=17\)

\(\Rightarrow\frac{z-3}{4}=5\Rightarrow z=5.4+3=23\)

Vậy \(x+y-z=11+17-23=28-23=5\)

 

 

30 tháng 7 2016

Ta có: \(\frac{x-1}{2}=\frac{2x-2}{4};\frac{y-2}{3}=\frac{3y-6}{9}\) 

=> \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\) và \(2x+3y-z=50\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}\)

\(=\frac{2x+3y-z-\left(2+6-3\right)}{9}=\frac{50-5}{9}=5\)

=> \(x=5.2+1=11\)

\(y=5.3+2=17\)

\(z=5.4+3=23\)