K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2019

7 tháng 5 2019

Ta có: x + y = ( a 1 2 +  b 1 ) + ( a 2 2  +  b 2 ) = ( a 1 +  a 2 ) 2  + ( b 1  +  b 2 )

Vì  a 1 ,  a 2 ,  b 1 ,  b 2  là các số hữu tỉ nên  a 1  +  a 2 ,  b 1  +  b 2  cũng là số hữu tỉ.

Lại có: xy = ( a 1 2  +  b 1 )( a 2 2  +  b 2 ) = 2 a 1 a 2  +  a 1 b 2 2  +  a 2 b 1 2  +  b 1 b 2

= ( a 1 b 2  +  a 2 b 1 ) 2  + (2 a 1 a 2  +  b 1 b 2 )

Vì a 1 ,  a 2 ,  b 1 ,  b 2 là các số hữu tỉ nên   a 1 b 2  +  a 2 b 1 ,  a 1 a 2  +  b 1 b 2  cũng là các số hữu tỉ.

26 tháng 5 2017

a)ta có :x+y=a1\(\sqrt{2}\)+b1+a2\(\sqrt{2}\)+b2=(a1+a2)\(\sqrt{2}\)+b1+b2

mặt khác, ta lại có a1,a2,b1,b2 là những số hữu tỉ nên (a1+a2);(b1+b2) cũng là những số hữu tỉ

=>biểu thức x+y cũng được viết dưới dạng a\(\sqrt{2}\)+b với a,b là số hữu tỉ.

ta xét tích x.y=(a1\(\sqrt{2}\)+b1)(a2\(\sqrt{2}\)+b2)=2a1.a2+a1.b2\(\sqrt{2}\)+b1.a2.\(\sqrt{2}\)+b1.b2=(a1b2+b1a2)\(\sqrt{2}\)+(2a1a2+b1b2)

a1,a2,b1,b2 là những số hữu tỉ nên các tích a1a2;b1b2;a1b2;a2b1 là những số hữu tỉ nên x.y cững có dạng a\(\sqrt{2}\)+b với a,b là số hữu tỉ

b) xét thương \(\dfrac{x}{y}\)=\(\dfrac{a_1\sqrt{2}+b_1}{a_2\sqrt{2}+b_2}=\dfrac{\left(a_1\sqrt{2}+b_1\right)\left(a_2\sqrt{2}-b_2\right)}{\left(a_2\sqrt{2}+b_2\right)\left(a_2\sqrt{2}-b_2\right)}\)

=\(\dfrac{2a_1a_2-a_1b_2\sqrt{2}+a_2b_1\sqrt{2}-b_1b_2}{2a_2^2-b_2^2}\)=\(\dfrac{\left(a_2b_1-a_1b_2\right)\sqrt{2}}{2a_2^2-b_2^2}+\dfrac{2a_1a_2-b_1b_2}{2a_2^2-b_2^2}\)

a1,b1,a2,b2 là những số hữu tỉ nên a1b2;a1a2;b1b2;a2b1 cũng là những số hữu tỉ hay \(\dfrac{a_2b_1-a_1b_2}{2a_2^2-b_2^2};\dfrac{2a_1a_2-b_1b_2}{2a_2^2-b_2^2}\)cũng là những số hữu tỉ nên \(\dfrac{x}{y}\) cũng có dạng a\(\sqrt{2}\)+b với a và b là những số hữu tỉ

27 tháng 5 2017

Căn bậc hai. Căn bậc ba

21 tháng 12 2017

Đặt k bằng tỉ số của dãy tỉ số bằng nhau:

  \(k=\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)

=> \(x=ak;y=bk;z=ck\) 

Khi đó ta có:

   \(\left(x+y+z\right)^2=\left(ak+bk+ck\right)^2=k^2\left(a+b+c\right)^2=k^2.1^2=k^2\)    (1)

     (Vì \(a+b+c=1\))

Và: \(x^2+y^2+z^2=\left(ak\right)^2+\left(bk\right)^2+\left(ck\right)^2=k^2\left(a^2+b^2+c^2\right)=k^2\)    (2)

       (vì \(a^2+b^2+c^2=1\))

Từ (1) và (2) suy ra \(x^2+y^2+z^2=\left(x+y+z\right)^2=k^2\)

13 tháng 12 2018

kho qua minh khong hieu

14 tháng 8 2015

2,

a,Vì  (2x+1) (3y-2)=12

\(\Rightarrow\left(2x+1;3y-2\right)\inƯ\left(12\right)=\left\{-1;1;-2;2;-3;3;-4;4;-6;6;-12;12\right\}\)

Lập bảng tự tính tiếp nhé............

Vậy ta lập được các cặp (x;y)là :(Tự tìm)

b,Làm tương tự a.

Nhớ nhấn đúng nha!

18 tháng 3 2020

Đáp án C x/y-1

6 tháng 5 2022

c

Câu 1. Chứng minh rằng tổng của một số hữu tỉ với một số vô tỉ là một số vô tỉ.Câu 2. Chứng minh các bất đẳng thức:a) (a + b)2 ≤ 2(a2 + b2)b) (a + b + c)2 ≤ 3(a2 + b2 + c2)c) (a1 + a2 + ….. + an)2 ≤ n(a12 + a22 + ….. + an2).Câu 3. Cho a3 + b3 = 2. Chứng minh rằng a + b ≤ 2.Câu 4. Chứng minh rằng: [x] + [y] ≤ [x + y].Câu 5. Tìm giá trị nhỏ nhất của: A = x2 + y2 biết x + y = 4.Câu 6. Tìm giá trị lớn nhất...
Đọc tiếp

Câu 1. Chứng minh rằng tổng của một số hữu tỉ với một số vô tỉ là một số vô tỉ.

Câu 2. Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2)

b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

c) (a1 + a2 + ….. + an)2 ≤ n(a12 + a22 + ….. + an2).

Câu 3. Cho a3 + b3 = 2. Chứng minh rằng a + b ≤ 2.

Câu 4. Chứng minh rằng: [x] + [y] ≤ [x + y].

Câu 5. Tìm giá trị nhỏ nhất của: A = x2 + y2 biết x + y = 4.

Câu 6. Tìm giá trị lớn nhất của: A = xyz(x + y)(y + z)(z + x) với x, y, z ≥ 0; x + y + z = 1.

Câu 7. Xét xem các số a và b có thể là số vô tỉ không nếu:

a) ab và a/b là số vô tỉ.

b) a + b và a/b là số hữu tỉ (a + b ≠ 0)

c) a + b, a2 và b2 là số hữu tỉ (a + b ≠ 0)

Câu 8. Cho a, b, c > 0. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

Câu 9. Chứng minh rằng [2x] bằng 2[x] hoặc 2[x] + 1

Câu 10. Cho số nguyên dương a. Xét các số có dạng: a + 15 ; a + 30 ; a + 45 ; … ; a + 15n. Chứng minh rằng trong các số đó, tồn tại hai số mà hai chữ số đầu tiên là 96.

--------------------------làm đầy đủ nha ^_^--------------------------------------------------------

0