Qua điểm K(0; 2) vẽ đường thẳng (d) song song với trục Ox. Đường thẳng (d) cắt các đường thẳng (1) và (2) lần lượt tại A và B. Tìm tọa độ của các điểm A, B.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Gọi điểm cố định \(M\left(x_0;y_0\right)\)
Khi đó đường thẳng y = k(x+3)-7 đi qua M , tức \(k\left(x_0+3\right)-7-y_0=0\)
Vì đường thẳng y = k(x+3)-7 luôn đi qua M nên \(\hept{\begin{cases}x_0+3=0\\-y_0-7=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x_0=-3\\y_0=-7\end{cases}}\)
Vậy đường thẳng đã cho luôn đi qua điểm M(-3;-7)
b/ Gọi điểm cố định là \(N\left(x_0;y_0\right)\)
Vì họ đường thẳng (m+2)x + (m-3)y -m+8 = 0 luôn đi qua N nên :
\(\left(m+2\right).x_0+\left(m-3\right).y_0-m+8=0\)
\(\Leftrightarrow m\left(x_0+y_0-1\right)+\left(2x_0-3y_0+8\right)=0\)
Ta có \(\hept{\begin{cases}x_0+y_0-1=0\\2x_0-3y_0+8=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x_0=-1\\y_0=2\end{cases}}\)
Vậy điểm cố định N(-1;2)
Câu còn lại bạn làm tương tự nhé ^^
c/ Đơn giản thôi mà =)
Ta cũng gọi điểm cố định đó là \(M\left(x_0;y_0\right)\)
Vì họ đường thẳng y=(2-k)x+k-5 đi qua M nên :
\(y_0=\left(2-k\right)x_0+k-5\Leftrightarrow k\left(1-x_0\right)+\left(2x_0-y_0-5\right)=0\)
Ta có \(\hept{\begin{cases}1-x_0=0\\2x_0-y_0-5=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x_0=1\\y_0=-3\end{cases}}\)
Vậy điểm cố định là M(1;-3)
Gọi M ( x 0 ; y 0 ) là điểm cố định mà d luôn đi qua.
M ( x 0 ; y 0 ) ∈ d ∀ k
⇔ y 0 = k + 1 3 − 1 x 0 + k + 3 ∀ k ⇔ k x 0 + x 0 + 3 k − k − 3 + 3 − 3 y 0 + y 0 = 0 ∀ k ⇔ k x 0 + 3 − 1 + x 0 + 3 − 3 + 1 − 3 y 0 = 0 ∀ k ⇔ x 0 + 3 − 1 = 0 x 0 + 1 − 3 y 0 + 3 − 3 = 0 ⇔ x 0 = 1 − 3 1 − 3 + 1 − 3 y 0 + 3 − 3 = 0 ⇔ x 0 = 1 − 3 1 − 3 y 0 + 4 − 2 3 = 0 ⇔ x 0 = 1 − 3 1 − 3 y 0 + 1 − 3 2 = 0 ⇔ x 0 = 1 − 3 y 0 = − 1 + 3 ⇒ M 1 − 3 ; 3 − 1
là điểm cố định mà d luôn đi qua
Đáp án cần chọn là: A
Với k ≥ 0 ta có:
Giả sử ( x 0 ; y 0 ) là điểm cố định mà (d) luôn đi qua
Khi đó ta có:
Vậy điểm cố định mà (d) luôn đi qua với mọi k ≥ 0 là (1- 3 ; 3 -1)
Gọi điểm cố định mà các đường thẳng (d) đều đi qua P( x o , y o ).
Ta có:
Phương trình (*) nghiệm đúng với mọi giá trị không âm của k , do đó ta có:
Vậy, với k ≥ 0, các đường thẳng (d) đều đi qua điểm cố định P(1- 3 ; 3 – 1).
Tam giác ABC vuông tại A \(\Rightarrow R=\frac{BC}{2}=\frac{1}{2}\sqrt{6^2+8^2}=5\)
a. Gọi \(d_1\)là đường thẳng cần tìm
Vì \(d_1\)song song Ox nên \(d_1\)có dạng y=b. Vì \(d_1\)đi qua K(-1;8) \(\Rightarrow d_1:y=8\)
b. Gọi \(d_2\)là đường thẳng đi qua M.N \(\Rightarrow\hept{\begin{cases}-3=1.a+b\\2=0+b\end{cases}\Rightarrow\hept{\begin{cases}a=-5\\b=2\end{cases}}}\)
\(\Rightarrow d_2:y=-5x+2\)
Gọi d là đường thẳng cần tìm .Vì d song song \(d_2\)\(\Rightarrow d:y=-5x+b\)
d đi qua gốc tọa độ \(\Rightarrow b=0\)
Vậy d có dạng y=-5x
Gọi đường thẳng (d) có hàm số y=kx+b (k khác 0) (do hàm số có hệ số góc là k )
Vì (d) đi qua I(0;-1) => -1=0k+b => b=-1
=> y=kx-1(d)
Xét phương trình hoành độ giao điểm chung của (P) và (d) ta có:
-x^2=kx-1
<=> x^2-kx-1=0 (1)
Xét phương trình có a=1;c=-1 => ac=-1 <0
=> (1) luôn có 2 nghiệm phân biệt
=> (P) và (d) luôn cắt nhau tại 2 điểm phân biệt
Đường thẳng (d) song song với trục Ox và đi qua điểm K(0; 2) nên nó là đường thẳng y = 2.
Đường thẳng y = 2 cắt đường thẳng (1) tại A nên điểm A có tung độ bằng 2.
Thay y = 2 vào phương trình y = -2x ta được x = -1.
Vậy điểm A(-1; 2)
Đường thẳng y = 2 cắt đường thẳng (2) tại B nên điểm B có tung độ bằng 2.
Thay y = 2 vào phương trình y = 0,5x ta được x = 4.
Vậy điểm B(4; 2).