Rút gọn các biểu thức: x - 4 + 16 - 8 x + x 2 với x > 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(x-y=1\)
\(=>x+y=\left(x+y\right).\left(x-y\right)\)
\(A=\left(x+y\right).\left(x-y\right).\left(x^2+y^2\right).\left(x^4+y^4\right)\)
\(A=\left(x^2-y^2\right).\left(x^2+y^2\right).\left(x^4+y^4\right)\)
\(A=\left(x^4-y^4\right).\left(x^4+y^4\right)\)
\(A=x^8-y^8\)
= \(-\left[\left(x-y\right)\left(x^2-y^2\right)\left(x^4-y^4\right)\left(x^8-y^8\right)\left(x^{16}-y^{16}\right)\right]\)
= \(-\left[\left(x-y\right)\left(x-y\right)^2\left(x-y\right)^4\left(x-y\right)^8\left(x-y\right)^{16}\right]\)
= \(-\left(1\cdot1^2\cdot1^4\cdot1^8\cdot1^{16}\right)\)
= -1
\(=\dfrac{x-4\sqrt{x}+4\sqrt{x}+16}{x-16}\cdot\dfrac{\sqrt{x}+2}{\sqrt{x}+16}=\dfrac{\left(x+16\right)\left(\sqrt{x}+2\right)}{\left(x-16\right)\left(\sqrt{x}+16\right)}\)
\(\frac{1}{1-x}+\frac{1}{1+x}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{1+x+1-x}{\left(1+x\right)\left(1-x\right)}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{2}{1-x^2}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{2+2x^2+2-2x^2}{\left(1-x^2\right)\left(1+x^2\right)}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{4}{1-x^4}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{4+4x^4+4-4x^4}{\left(1-x^4\right)\left(1+x^4\right)}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{8}{1-x^8}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{8+8x^8+8-8x^8}{\left(1-x^8\right)\left(1+x^8\right)}+\frac{16}{1+x^{16}}\)
\(=\frac{16}{1-x^{16}}+\frac{16}{1+x^{16}}\)
\(=\frac{16+16x^{16}+16-16x^{16}}{\left(1-x^{16}\right)\left(1+x^{16}\right)}\)
\(=\frac{32}{1-x^{32}}\)
Rút Gọn:
\(A=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{1-\frac{8}{x}+\frac{16}{x^2}}}\)
\(=\frac{\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}}{\sqrt{\left(\frac{4}{x}-1\right)^2}}\)
\(=\frac{\sqrt{x-4}+2+\sqrt{x-4}-2}{\frac{4}{x}-1}\)
\(=\frac{2\sqrt{x-4}}{\frac{4-x}{x}}\)
\(=-\frac{2x\sqrt{x-4}}{x-4}\)
\(=\frac{-2x}{\sqrt{x-4}}\)