Chứng minh đẳng thức: a a + b b a + b - a b = a - b 2 v ớ i a > 0 , b > 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
Vế trái: -a.(c-d)-d.(a+c)
=-ac+ad-ad-cd
=-ac-cd (1)
Vế phải: -c(a+d)=-ac-cd (1)
Vì (1)=(2)
<=> -a.(c-d)-d.(a+c)=-c.(a+d) (đpcm)
(Lưu ý: "đpcm" nghĩa là "điều phải chứng minh".)
Lời giải:
1) \(VT=-a.\left(c-d\right)-d.\left(a+c\right)\)
$=-ac+ad-da-dc$
$=-ac-dc$
$=-c(a+d) (đpcm)$
$2) (3a+2).(2a-1)+(3-a).(6a+2)-17.(a-1)$
$=6a^2-3a+4a-2+18a+6-6a^2-2a-17a+17$
$=21$
Vậy giá trị biểu thức không phụ thuộc vào a
Áp dụng BĐT Cô si cho các số dương ta có :
\(+,\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}\ge2\sqrt{\dfrac{a^2}{b^2}.\dfrac{b^2}{c^2}}=\dfrac{2a}{c}\left(1\right)\)
Cmtt ta có : +, \(\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{2b}{a}\left(2\right)\)
+, \(\dfrac{a^2}{b^2}+\dfrac{c^2}{a^2}\ge\dfrac{2c}{b}\left(3\right)\)
Cộng vế với vế của các BĐT \(\left(1\right),\left(2\right),\left(3\right)\) ta được :
\(2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)\ge2\left(\dfrac{c}{b}+\dfrac{b}{a}+\dfrac{a}{c}\right)\)
\(\Leftrightarrow\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{c}{b}+\dfrac{b}{a}+\dfrac{a}{c}\left(đpcm\right)\)
\(\left(a+b+c\right)^2+a^2+b^2+c^2=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\)
VT : (a + b + c)2 + a2 + b2 + c2
= a2 + b2 + c2 + 2ab +2bc + 2ac + a2 + b2 + c2
= ( a2 + 2ab + b2 ) + (b2 + 2bc + c2) + ( a2 + 2ac + c2)
= (a + b)2 + (b + c)2 + (a + c)2 = VP
Vậy \(\left(a+b+c\right)^2+a^2+b^2+c^2=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\)(đpcm)
(–a – b)2 = [(– 1).(a + b)]2 = (–1)2(a + b)2 = 1.(a + b)2 = (a + b)2 (đpcm)
Lời giải:
$b-a=-(a-b)(1)$
\(b\sqrt{\frac{-a}{b}}=b\sqrt{\frac{-a}{b}.\frac{-b}{a}}.\sqrt{\frac{-a}{b}}\)
\(=b\sqrt{\frac{-a}{b}.\frac{-a}{b}}.\sqrt{\frac{-b}{a}}=b.\frac{-a}{b}.\sqrt{\frac{-b}{a}}=-a\sqrt{\frac{-b}{a}}(2)\)
Từ $(1);(2)$, chia theo vế suy ra:
\(\frac{b-a}{b\sqrt{\frac{-a}{b}}}=\frac{-(a-b)}{-a\sqrt{\frac{-b}{a}}}=\frac{a-b}{a\sqrt{\frac{-b}{a}}}\) (đpcm)
Bài 4: Chứng minh các hằng đẳng thức sau
a. x2+y2=(x+ y)2- 2xy
biến đổi vế phải ta được:
(x+ y)2- 2xy
=x2+2xy+y2-2xy
=x2+y2 bằng vế phải
=> biểu thức đã được chứng minh
b. (a+b)2-(a-b)(a+b)= 2b(a+b)
biến đổi vế trái ta được:
(a+b)2-(a-b)(a+b)
=a2+2ab+b2-(a2-b2)
=a2+2ab+b2-a2+b2
=2ab+2b2
=2b(a+b)
Với a > 0; b > 0 ta có: